New results on shortest paths in three dimensions

We revisit the problem of computing shortest obstacle-avoiding paths among obstacles in three dimensions. We prove new hardness results, showing, e.g., that computing Euclidean shortest paths among sets of "stacked" axis-aligned rectangles is NP-complete, and that computing L1-shortest paths among disjoint balls is NP-complete. On the positive side, we present an efficient algorithm for computing an L1-shortest path between two given points that lies on or above a given polyhedral terrain. We also give polynomial-time algorithms for some versions of stacked polygonal obstacles that are "terrain-like" and analyze the complexity of shortest path maps in the presence of parallel halfplane "walls.

[1]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[2]  Kenneth L. Clarkson,et al.  Rectilinear shortest paths through polygonal obstacles in O(n(logn)2) time , 1987, SCG '87.

[3]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[4]  Chee-Keng Yap,et al.  Monotonicity of rectilinear geodesics in d-space (extended abstract) , 1996, SCG '96.

[5]  Ioannis G. Tollis,et al.  Path planning in the presence of vertical obstacles , 1990, IEEE Trans. Robotics Autom..

[6]  Joseph S. B. Mitchell,et al.  Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[7]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[8]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[9]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[10]  Sariel Har-Peled,et al.  Constructing approximate shortest path maps in three dimensions , 1998, SCG '98.

[11]  Joonsoo Choi,et al.  Monotonicity of rectilinear geodesics in d-space , 1996, SoCG 1996.

[12]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[13]  Moshe Dror,et al.  Touring a sequence of polygons , 2003, STOC '03.

[14]  Chee-Keng Yap,et al.  Precision-Sensitive Euclidean Shortest Path in 3-Space , 2000, SIAM J. Comput..

[15]  Chee-Keng Yap,et al.  Approximate Euclidean Shortest Paths in 3-Space , 1997, Int. J. Comput. Geom. Appl..

[16]  C. Bajaj The Algebraic Complexity of Shortest Paths in Polyhedral Spaces , 1985 .

[17]  Chandrajit L. Bajaj,et al.  The algebraic degree of geometric optimization problems , 1988, Discret. Comput. Geom..

[18]  Joseph S. B. Mitchell,et al.  L1 shortest paths among polygonal obstacles in the plane , 1992, Algorithmica.

[19]  Sanjiv Kapoor,et al.  Efficient computation of geodesic shortest paths , 1999, STOC '99.

[20]  Micha Sharir,et al.  On shortest paths amidst convex polyhedra , 1987, SCG '86.

[21]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[22]  Chee-Keng Yap,et al.  Precision-sensitive Euclidean shortest path in 3-space (extended abstract) , 1995, SCG '95.

[23]  Mark de Berg,et al.  Shortest path queries in rectilinear worlds of higher dimension (extended abstract) , 1991, SCG '91.