SOLARPROP: Charge-sign dependent solar modulation for everyone

Abstract We present SOLARPROP , a tool to compute the influence of charge-sign dependent solar modulation for cosmic ray spectra. SOLARPROP is able to use the output of popular tools like GALPROP or DRAGON and offers the possibility to embed new models for solar modulation. We present some examples for proton, antiproton and positron fluxes in the light of the recent PAMELA and AMS-02 data. Program summary Program title: SOLARPROP Catalogue identifier: AFAP_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFAP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: MIT licence (MIT) No. of lines in distributed program, including test data, etc.: 15347 No. of bytes in distributed program, including test data, etc.: 125635 Distribution format: tar.gz Programming language: C++ll. Computer: PC. Operating system: Linux. Classification: 1.1, 1.6. External routines: cfitsio, CCFITS Nature of problem: Calculation of the influence on cosmic rays by the heliosphere including drift effects. Solution method: Stochastic differential equations. Additional comments: Simple interface for text and FITS format input and output. Running time: Between a few seconds and a few minutes depending on the physical model.

[1]  W. Webber,et al.  Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of Heliospheric Ions , 2013, Science.

[2]  Ming Zhang A Markov Stochastic Process Theory of Cosmic-Ray Modulation , 1999 .

[3]  S. Pensotti,et al.  SYSTEMATIC INVESTIGATION OF SOLAR MODULATION OF GALACTIC PROTONS FOR SOLAR CYCLE 23 USING A MONTE CARLO APPROACH WITH PARTICLE DRIFT EFFECTS AND LATITUDINAL DEPENDENCE , 2011, 1110.4315.

[4]  M. Winkler,et al.  AMS-02 antiprotons reloaded , 2015, 1506.04145.

[5]  M. Hattingh,et al.  Steady-state drift-dominated modulation models for galactic cosmic rays , 1995 .

[6]  E. Parker,et al.  On the convection, diffusion, and adiabatic deceleration of cosmic rays in the solar wind , 1970 .

[7]  D. Kopriva,et al.  Effects of particle drift on the transport of cosmic rays. III - Numerical models of galactic cosmic-ray modulation , 1979 .

[8]  Colin Tudge,et al.  Planet , 1999 .

[9]  Eugene N. Parker,et al.  THE PASSAGE OF ENERGETIC CHARGED PARTICLES THROUGH INTERPLANETARY SPACE , 1965 .

[10]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[11]  K. K. Tang,et al.  The Cosmic Positron Fraction: Implications of a New Measurement , 1995 .

[12]  I. Büsching,et al.  A stochastic differential equation code for multidimensional Fokker-Planck type problems , 2012, Comput. Phys. Commun..

[13]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[14]  Potgieter,et al.  The calculation of neutral sheet drift in two-dimensional cosmic-ray modulation models , 1989 .

[15]  K. C. Kim,et al.  Measurement of the cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight , 2008, 0805.1754.

[16]  A. Strong,et al.  Propagation of Cosmic-Ray Nucleons in the Galaxy , 1998, astro-ph/9807150.

[18]  T. Yamagami,et al.  Measurements of 0.2–20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer , 2006, astro-ph/0611388.

[19]  K. C. Kim,et al.  Measurement of the cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight over antarctica. , 2011, Physical review letters.

[20]  D. Maurin,et al.  Cosmic Rays below Z = 30 in a Diffusion Model: New Constraints on Propagation Parameters , 2001 .

[21]  T. Krüger,et al.  A Fisk-Parker Hybrid Heliospheric Magnetic Field with a Solar-Cycle Dependence , 2008 .

[22]  L. Maccione Low energy cosmic ray positron fraction explained by charge-sign dependent solar modulation. , 2012, Physical review letters.

[23]  W. Marsden I and J , 2012 .

[24]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[25]  Kalevi Mursula,et al.  Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004 , 2005 .

[26]  M. Boezio,et al.  MODULATION OF GALACTIC ELECTRONS IN THE HELIOSPHERE DURING THE UNUSUAL SOLAR MINIMUM OF 2006–2009: A MODELING APPROACH , 2015 .

[27]  A. V. Karelin,et al.  TIME DEPENDENCE OF THE e− FLUX MEASURED BY PAMELA DURING THE 2006 JULY–2009 DECEMBER SOLAR MINIMUM , 2013, 1512.01079.

[28]  M. Winkler,et al.  Dark matter after the BESS-Polar II experiment , 2012 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  I. Usoskin,et al.  Stochastic simulation of cosmic ray modulation including a wavy heliospheric current sheet , 2007 .

[31]  B. Heber,et al.  Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: Implications for the diffusion tensor , 2000 .

[32]  G. Webb,et al.  Drift theory of charged particles in electric and magnetic fields , 1985 .

[33]  M. Casolino,et al.  Cosmic-ray positron energy spectrum measured by PAMELA. , 2013, Physical review letters.

[34]  M. Winkler,et al.  The cosmic ray antiproton background for AMS-02 , 2014, 1408.0299.

[35]  R. D. Strauss,et al.  MODELING THE MODULATION OF GALACTIC AND JOVIAN ELECTRONS BY STOCHASTIC PROCESSES , 2011 .

[36]  Mitchell,et al.  Precision measurement of cosmic-Ray antiproton spectrum , 1999, Physical review letters.

[37]  L. Maccione,et al.  Erratum: Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model , 2008, Journal of Cosmology and Astroparticle Physics.

[38]  J. T. Hoeksema,et al.  The large-scale structure of the heliospheric current sheet during the Ulysses epoch , 1995 .

[39]  G. Bazilevskaya,et al.  Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers , 2011 .

[40]  S. Yanagita,et al.  A stochastic view of the solar modulation phenomena of cosmic rays , 1998 .

[41]  M. Potgieter,et al.  A drift model for the modulation of galactic cosmic rays , 1985 .

[42]  R. Sagdeev,et al.  Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.