The direct and indirect radiative effects of biogenic secondary organic aerosol

Abstract. We use a global aerosol microphysics model in combination with an offline radiative transfer model to quantify the radiative effect of biogenic secondary organic aerosol (SOA) in the present-day atmosphere. Through its role in particle growth and ageing, the presence of biogenic SOA increases the global annual mean concentration of cloud condensation nuclei (CCN; at 0.2% supersaturation) by 3.6–21.1%, depending upon the yield of SOA production from biogenic volatile organic compounds (BVOCs), and the nature and treatment of concurrent primary carbonaceous emissions. This increase in CCN causes a rise in global annual mean cloud droplet number concentration (CDNC) of 1.9–5.2%, and a global mean first aerosol indirect effect (AIE) of between +0.01 W m−2 and −0.12 W m−2. The radiative impact of biogenic SOA is far greater when biogenic oxidation products also contribute to the very early stages of new particle formation; using two organically mediated mechanisms for new particle formation, we simulate global annual mean first AIEs of −0.22 W m−2 and −0.77 W m−2. The inclusion of biogenic SOA substantially improves the simulated seasonal cycle in the concentration of CCN-sized particles observed at three forested sites. The best correlation is found when the organically mediated nucleation mechanisms are applied, suggesting that the first AIE of biogenic SOA could be as large as −0.77 W m−2. The radiative impact of SOA is sensitive to the presence of anthropogenic emissions. Lower background aerosol concentrations simulated with anthropogenic emissions from 1750 give rise to a greater fractional CCN increase and a more substantial first AIE from biogenic SOA. Consequently, the anthropogenic indirect radiative forcing between 1750 and the present day is sensitive to assumptions about the amount and role of biogenic SOA. We also calculate an annual global mean direct radiative effect of between −0.08 W m−2 and −0.78 W m−2 in the present day, with uncertainty in the amount of SOA produced from the oxidation of BVOCs accounting for most of this range.

[1]  John H. Seinfeld,et al.  Secondary organic aerosol formation from isoprene photooxidation under high‐NOx conditions , 2005 .

[2]  H. Hansson,et al.  High Natural Aerosol Loading over Boreal Forests , 2006, Science.

[3]  Ü. Rannik,et al.  Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR) , 2001 .

[4]  A pseudo-Lagrangian model study of the size distribution properties over Scandinavia: transport from Aspvreten to Värriö , 2004 .

[5]  H. Lihavainen,et al.  Observational signature of the direct radiative effect by natural boreal forest aerosols and its relation to the corresponding first indirect effect , 2009 .

[6]  S. Tripathi,et al.  Isoprene suppression of new particle formation in a mixed deciduous forest , 2011 .

[7]  Pasi Aalto,et al.  A new feedback mechanism linking forests, aerosols, and climate , 2003 .

[8]  J. Randerson,et al.  Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period , 2003, Science.

[9]  S. Kreidenweis,et al.  Satellite observations cap the atmospheric organic aerosol budget , 2010 .

[10]  Athanasios Nenes,et al.  Continued development of a cloud droplet formation parameterization for global climate models , 2005 .

[11]  D. R. Worsnop,et al.  Evolution of Organic Aerosols in the Atmosphere , 2009, Science.

[12]  I. Riipinen,et al.  Direct Observations of Atmospheric Aerosol Nucleation , 2013, Science.

[13]  K. Strawbridge,et al.  Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley , 2011 .

[14]  R. Betts Offset of the potential carbon sink from boreal forestation by decreases in surface albedo , 2000, Nature.

[15]  Gerhard Krinner,et al.  Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model , 2005 .

[16]  P. Stier,et al.  Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations , 2009 .

[17]  C. Jones,et al.  Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry , 2012 .

[18]  M. Claeys,et al.  Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States , 2005 .

[19]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[20]  M. Chipperfield,et al.  New version of the TOMCAT/SLIMCAT off‐line chemical transport model: Intercomparison of stratospheric tracer experiments , 2006 .

[21]  N. Mihalopoulos,et al.  Formation and gas/particle partitioning of monoterpenes photo‐oxidation products over forests , 1999 .

[22]  I. Riipinen,et al.  Interactive comment on “ Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events ” by J , 2011 .

[23]  A. Betts,et al.  Contrasting convective regimes over the Amazon: Implications for cloud electrification , 2002 .

[24]  C. N. Hewitt,et al.  Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest , 2010 .

[25]  A. Nenes,et al.  Cloud condensation nuclei activity of isoprene secondary organic aerosol , 2011 .

[26]  S. Martin,et al.  Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity , 2009 .

[27]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[28]  G. Mann,et al.  Aerosol mass spectrometer constraint on the global secondary organic aerosol budget , 2011 .

[29]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[30]  N. Mihalopoulos,et al.  Formation of atmospheric particles from organic acids produced by forests , 1998, Nature.

[31]  T. J. Wallington,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species , 2006 .

[32]  J. Seinfeld,et al.  A global perspective on aerosol from low-volatility organic compounds , 2010 .

[33]  Glendon Frick,et al.  Alpha-pinene oxidation in the presence of seed aerosol: estimates of nucleation rates, growth rates, and yield. , 2007, Environmental science & technology.

[34]  G. Mann,et al.  Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model , 2012 .

[35]  G. Mann,et al.  The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales , 2006 .

[36]  Martyn P. Chipperfield,et al.  Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model , 2010 .

[37]  G. Mann,et al.  The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei , 2013 .

[38]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[39]  M. Andreae,et al.  Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events , 2010 .

[40]  J. Seinfeld,et al.  Parameterization of cloud droplet formation in global climate models , 2003 .

[41]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[42]  T. Hoffmann,et al.  Formation of Secondary Organic Aerosols , 2003 .

[43]  M. Chipperfield,et al.  The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model , 2009 .

[44]  L. Lee,et al.  Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model , 2012 .

[45]  Jingchuan Zhou,et al.  Cloud condensation nuclei in the Amazon Basin: “marine” conditions over a continent? , 2001 .

[46]  M. Andreae,et al.  Smoking Rain Clouds over the Amazon , 2004, Science.

[47]  K. Tsigaridis,et al.  Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM , 2011 .

[48]  J. Seinfeld,et al.  Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere , 2013, Nature.

[49]  Qi Chen,et al.  Loading-dependent elemental composition of α-pinene SOA particles , 2008 .

[50]  H. Akimoto,et al.  Reactions of ozone with α‐pinene and β‐pinene in air: Yields of gaseous and particulate products , 1989 .

[51]  K. Caldeira,et al.  Combined climate and carbon-cycle effects of large-scale deforestation , 2006, Proceedings of the National Academy of Sciences.

[52]  P. Hari,et al.  Estimation of different forest-related contributions to the radiative balance using observations in southern Finland , 2003 .

[53]  P. Forster,et al.  Global cloud condensation nuclei influenced by carbonaceous combustion aerosol , 2011 .

[54]  Z. Jurányi,et al.  CLOUD FORMING POTENTIAL OF SECONDARY ORGANIC AEROSOL , 2008 .

[55]  M. Petters,et al.  A review of the anthropogenic influence on biogenic secondary organic aerosol , 2011 .

[56]  J. Hudson,et al.  Surface cloud condensation nuclei and condensation nuclei measurements at Reno, Nevada , 1991 .

[57]  Donald Dabdub,et al.  Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons , 1999 .

[58]  Sonia M. Kreidenweis,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning , 2012 .

[59]  M. Kulmala,et al.  Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events , 2002 .

[60]  M. Chipperfield,et al.  A three‐dimensional model study of the effect of new temperature‐dependent quantum yields for acetone photolysis , 2005 .

[61]  Nathalie de Noblet-Ducoudré,et al.  Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes , 2010 .

[62]  T. Petäjä,et al.  Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth , 2012 .

[63]  U. Lohmann,et al.  Importance of vertical velocity variations in the cloud droplet nucleation process of marine stratus clouds , 2005 .

[64]  I. Riipinen,et al.  Growth rates of nucleation mode particles in Hyytiälä during 2003−2009: variation with particle size, season, data analysis method and ambient conditions , 2011 .

[65]  J. Seinfeld,et al.  Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres , 1999 .

[66]  Jean-Francois Lamarque,et al.  Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change , 2008 .

[67]  W. R. Leaitch,et al.  The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation , 2010 .

[68]  Kenneth S. Carslaw,et al.  Mapping the uncertainty in global CCN using emulation , 2012 .

[69]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[70]  Jiwen Fan,et al.  Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas , 2006 .

[71]  S. Martin,et al.  Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene , 2010 .

[72]  K. Carslaw,et al.  Boreal forests, aerosols and the impacts on clouds and climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[73]  Frank Arnold,et al.  Atmospheric sulphuric acid and aerosol formation : implications from atmospheric measurements for nucleation and early growth mechanisms , 2006 .

[74]  Ü. Rannik,et al.  Nucleation events in the continental boundary layer: Long‐term statistical analyses of aerosol relevant characteristics , 2003 .

[75]  J. Brenguier,et al.  Aerosol activation in marine stratocumulus clouds: 1. Measurement validation for a closure study , 2003 .

[76]  John H. Seinfeld,et al.  Gas-Phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate Products , 1999 .

[77]  G. Mann,et al.  Impact of nucleation on global CCN , 2009 .

[78]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens , 2006 .

[79]  T. Nakajima,et al.  Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene , 2008 .

[80]  Erik Swietlicki,et al.  Warming-induced increase in aerosol number concentration likely to moderate climate change , 2013 .

[81]  N. Fuchs,et al.  HIGH-DISPERSED AEROSOLS , 1971 .

[82]  A. Kettle,et al.  Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models , 2000 .

[83]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[84]  R. Monson,et al.  Response of isoprene emission to ambient CO2 changes and implications for global budgets , 2009 .

[85]  Ari Laaksonen,et al.  Analysis of the growth of nucleation mode particles observed in Boreal forest , 1998 .

[86]  Douglas R. Worsnop,et al.  The contribution of organics to atmospheric nanoparticle growth , 2012 .

[87]  R. A. Cox,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II , 1989 .

[88]  I. Riipinen,et al.  Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations , 2011 .

[89]  P. Adams,et al.  Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates , 2008 .

[90]  P. K. Snyder,et al.  Evaluating the influence of different vegetation biomes on the global climate , 2004 .

[91]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[92]  Timothy M. VanReken,et al.  Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth , 2008 .

[93]  Gerard Capes,et al.  Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model , 2011 .

[94]  G. Mann,et al.  Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate , 2012 .

[95]  A. Arneth,et al.  BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2 , 2012 .

[96]  M. Andreae,et al.  Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles , 2006, Science.

[97]  Tuomas Laurila,et al.  Overview of the atmospheric research activities and results at Pallas GAW station , 2003 .

[98]  G. Mann,et al.  Natural aerosol direct and indirect radiative effects , 2013 .

[99]  G. Mann,et al.  A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number , 2012 .

[100]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[101]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[102]  M. Komppula,et al.  Observations of new particle formation and size distributions at two different heights and surroundings in subarctic area in northern Finland , 2003 .

[103]  Ari Laaksonen,et al.  Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration , 2006 .

[104]  H. Hansson,et al.  The natural aerosol over Northern Europe and its relation to anthropogenic emissions—implications of important climate feedbacks , 2008 .

[105]  C. O'Dowd,et al.  Primary versus secondary contributions to particle number concentrations in the European boundary layer , 2011 .

[106]  Pasi Aalto,et al.  Aerosol formation: Atmospheric particles from organic vapours , 2002, Nature.

[107]  T. Deshler,et al.  Vertical profiles of cloud condensation nuclei above Wyoming , 2001 .

[108]  L. Pirjola,et al.  Parameterizations for sulfuric acid/water nucleation rates , 1998 .

[109]  A. Goldstein,et al.  Known and Unexplored Organic Constituents in the Earth's Atmosphere , 2007 .

[110]  Martin Gysel,et al.  Cloud forming potential of secondary organic aerosol under near atmospheric conditions , 2008 .

[111]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[112]  G. Mann,et al.  Contribution of particle formation to global cloud condensation nuclei concentrations , 2008 .

[113]  John H Seinfeld,et al.  Secondary organic aerosol formation from isoprene photooxidation. , 2005, Environmental science & technology.

[114]  M. Andreae,et al.  Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene , 2004, Science.

[115]  Pasi Aalto,et al.  The role of VOC oxidation products in continental new particle formation , 2007 .

[116]  O. Boucher,et al.  Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions , 2012 .

[117]  Spyros N. Pandis,et al.  CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol , 2008 .

[118]  Martyn P. Chipperfield,et al.  A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties , 2005 .

[119]  M. Andreae,et al.  Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling , 2007 .

[120]  Jian Wang,et al.  Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect , 2008 .

[121]  I. Riipinen,et al.  Evidence for the role of organics in aerosol particle formation under atmospheric conditions , 2010, Proceedings of the National Academy of Sciences.

[122]  M. D. Maso,et al.  New particle formation in forests inhibited by isoprene emissions , 2009, Nature.

[123]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[124]  Hans-F. Graf,et al.  The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years , 2002 .

[125]  H. Hansson,et al.  An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten , 2004 .

[126]  G. Mann,et al.  A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties , 2005 .

[127]  Qi Zhang,et al.  Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes , 2007 .

[128]  J. M. Mäkelä,et al.  On the formation, growth and composition of nucleation mode particles , 2001 .

[129]  Jun Zheng,et al.  Formation of nanoparticles of blue haze enhanced by anthropogenic pollution , 2009, Proceedings of the National Academy of Sciences.

[130]  V. Weisskopf THE INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS , 2022 .

[131]  M. Facchini,et al.  On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation , 2010 .