Iridium-based electrocatalytic systems for the determination of insulin.
暂无分享,去创建一个
Two electrochemical catalytic systems for the determination of insulin were developed. The homogeneous system was based on the oxidation of insulin by chloro complexes of iridium(IV). Kinetic studies revealed that the aquation of iridium complexes activated them toward the oxidation of insulin in acidic solutions; e.g., the rate constant was equal to 25, 900, and 8,400 L mol(-1) s(-1) for the oxidation of insulin by the IrCl62-, Ir(H2O)CI5-, and Ir(H2O)2Cl4 complexes, respectively. The inertness of the iridium complexes argued for the outer-sphere mechanism of the homogeneous oxidation reaction. Electroplating of aquated iridium complexes on the glassy carbon electrode resulted in the formation of the iridium oxide (IrOx) surface film, which was used in the heterogeneous detection system for insulin. The catalytic activity of the IrOx film toward insulin oxidation was ascribed to a combination of electron-transfer mediation and oxygen transfer which was related to the acid/base chemistry of the film. The IrOx film electrode was used as an amperometric detector for flow injection analysis of insulin in pH 7.40 phosphate buffer. Linear least-squares calibration curves over the range 0.05-0.50 microM (five points) had slopes of 35.2 +/- 0.4 nA microM(-1) and correlation coefficients of 0.999. The detection limit for insulin was 20 nM using the criterion of a signal of 3 times the peak-to-peak noise. The advantageous properties of the detector based on the IrOx film are its inherent stability at physiological pH, high catalytic activity toward insulin oxidation, and simplicity of preparation.