Stability and convergence of semi-implicit time-stepping algorithm for stationary incompressible magnetohydrodynamics

Abstract For the stationary incompressible magnetohydrodynamics (MHD) equations, we provide a new uniqueness assumption (A0) and show the exponential stability of the solution. Then, the semi-implicit time-stepping algorithm is used to solve the stationary MHD equations. The algorithm is proved to be unconditionally stable. The discrete velocity and magnetic field are bounded in L ∞ ( 0 , + ∞ ; L ∞ ( Ω ) ) for any space and time step sizes. The error estimates for the algorithm are deduced under the uniqueness conditions. Finally, numerical experiments are performed to testify our theoretical analysis.

[1]  Jean-Frédéric Gerbeau,et al.  A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.

[2]  Yinnian He Euler implicit/explicit iterative scheme for the stationary Navier–Stokes equations , 2013, Numerische Mathematik.

[3]  Fuyi Xu A regularity criterion for the 3D incompressible magneto-hydrodynamics equations , 2017 .

[4]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[5]  A. Meir,et al.  Analysis and Numerical Approximation of a Stationary MHD Flow Problem with Nonideal Boundary , 1999 .

[6]  D. Schötzau,et al.  A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .

[7]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[8]  Yuhong Zhang,et al.  Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow , 2017, Advances in Computational Mathematics.

[9]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[10]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[11]  W. Hughes,et al.  Electromagnetodynamics of fluids , 1966 .

[12]  M. Gunzburger,et al.  On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .

[13]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[14]  Saeed Rahman,et al.  Regularity criterion for 3D MHD fluid passing through the porous medium in terms of gradient pressure , 2014, J. Comput. Appl. Math..

[15]  A. I. Nesliturk,et al.  Two‐level finite element method with a stabilizing subgrid for the incompressible MHD equations , 2009 .

[16]  Endre Süli,et al.  Large-time behaviour of solutions to the magneto-hydrodynamics equations , 1996 .

[17]  J. C. Simo,et al.  Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations☆ , 1996 .

[18]  Matthias Wiedmer,et al.  Finite element approximation for equations of magnetohydrodynamics , 2000, Math. Comput..

[19]  Janet S. Peterson,et al.  A two-level newton, finite element algorithm for approximating electrically conducting incompressible fluid flows , 1994 .

[20]  Tasawar Hayat,et al.  Regularity criteria for unsteady MHD third grade fluid due to rotating porous disk , 2017 .

[21]  Dominik Schötzau,et al.  Mixed finite element approximation of incompressible MHD problems based on weighted regularization , 2004 .

[22]  Ping Zhang,et al.  Large Time Behavior of Solutions to 3-D MHD System with Initial Data Near Equilibrium , 2017, 1702.05260.

[23]  Chongsheng Cao,et al.  Two regularity criteria for the 3D MHD equations , 2009, 0903.2577.

[24]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[25]  W. Habashi,et al.  A finite element method for magnetohydrodynamics , 2001 .

[26]  Yinnian He,et al.  Two-Level Coupled and Decoupled Parallel Correction Methods for Stationary Incompressible Magnetohydrodynamics , 2015, J. Sci. Comput..

[27]  Zhen Lei,et al.  Global Well-Posedness of the Incompressible Magnetohydrodynamics , 2016, 1605.00439.

[28]  J. A. Shercliff,et al.  A Textbook of Magnetohydrodynamics , 1965 .

[29]  Jian Li,et al.  An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method , 2018, International Communications in Heat and Mass Transfer.

[30]  Yinnian He,et al.  Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation , 2015, Comput. Math. Appl..

[31]  Zhong Tan,et al.  Global Well-Posedness of an Initial-Boundary Value Problem for Viscous Non-Resistive MHD Systems , 2015, SIAM J. Math. Anal..

[32]  Yinnian He,et al.  Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics , 2014 .

[33]  R. Codina,et al.  Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics , 2015 .

[34]  Ramon Codina,et al.  Stabilized Finite Element Approximation of the Stationary Magneto-Hydrodynamics Equations , 2006 .

[35]  Dominik Schötzau,et al.  Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.