VisTrails SAHM: visualization and workflow management for species habitat modeling

The Software for Assisted Habitat Modeling (SAHM) has been created to both expedite habitat modeling and help maintain a record of the various input data, pre- and post-processing steps and modeling options incorporated in the construction of a species distribution model through the established workflow management and visualization VisTrails software. This paper provides an overview of the VisTrails:SAHM software including a link to the open source code, a table detailing the current SAHM modules, and a simple example modeling an invasive weed species in Rocky Mountain National Park, USA.

[1]  Erik Anderson,et al.  A Customized Python Module for CFD Flow Analysis within VisTrails , 2009, Computing in Science & Engineering.

[2]  Yu Liu,et al.  ModEco: an integrated software package for ecological niche modeling , 2010 .

[3]  Penny Rheingans,et al.  NIH-NSF visualization research challenges report summary , 2006, IEEE Computer Graphics and Applications.

[4]  Steven J. Phillips,et al.  The art of modelling range‐shifting species , 2010 .

[5]  S. Todo,et al.  The ALPS project release 2.0: open source software for strongly correlated systems , 2011, 1101.2646.

[6]  M. Sykes,et al.  Methods and uncertainties in bioclimatic envelope modelling under climate change , 2006 .

[7]  Jennifer A. Miller,et al.  Mapping Species Distributions: Spatial Inference and Prediction , 2010 .

[8]  Cláudio T. Silva,et al.  End-to-End eScience: Integrating Workflow, Query, Visualization, and Provenance at an Ocean Observatory , 2008, 2008 IEEE Fourth International Conference on eScience.

[9]  Cláudio T. Silva,et al.  Managing Rapidly-Evolving Scientific Workflows , 2006, IPAW.

[10]  Nicholas W. Synes,et al.  Choice of predictor variables as a source of uncertainty in continental‐scale species distribution modelling under climate change , 2011 .

[11]  David Maier,et al.  Scientific Exploration in the Era of Ocean Observatories , 2008, Computing in Science & Engineering.

[12]  T. Dawson,et al.  Model‐based uncertainty in species range prediction , 2006 .

[13]  Philippe Bonnet,et al.  A Provenance-Based Infrastructure to Support the Life Cycle of Executable Papers , 2011, ICCS.

[14]  Pushpam Kumar Agriculture (Chapter8) in IPCC, 2007: Climate change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[15]  Juliana Freire,et al.  Using VisTrails and Provenance for Teaching Scientific Visualization , 2011, Comput. Graph. Forum.

[16]  A. Peterson,et al.  New developments in museum-based informatics and applications in biodiversity analysis. , 2004, Trends in ecology & evolution.

[17]  Gordon H. Rodda,et al.  Challenges in Identifying Sites Climatically Matched to the Native Ranges of Animal Invaders , 2011, PloS one.

[18]  Matthew B. Hastings,et al.  Galois Conjugates of Topological Phases , 2011, 1106.3267.

[19]  James P. Ahrens,et al.  Provenance in Comparative Analysis: A Study in Cosmology , 2008, Computing in Science & Engineering.

[20]  T. Hastie,et al.  Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions , 2006 .

[21]  Erik W. Anderson,et al.  Towards Development of a Circuit Based Treatment for Impaired Memory: A Multidisciplinary Approach , 2007, 2007 3rd International IEEE/EMBS Conference on Neural Engineering.

[22]  Robert P. Anderson,et al.  Ecological Niches and Geographic Distributions , 2011 .

[23]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[24]  Richard E. Glor,et al.  ENMTools: a toolbox for comparative studies of environmental niche models , 2010 .

[25]  M. Araújo,et al.  BIOMOD – a platform for ensemble forecasting of species distributions , 2009 .

[26]  Kees M. van Hee,et al.  Workflow Management: Models, Methods, and Systems , 2002, Cooperative information systems.

[27]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[28]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[29]  Cláudio T. Silva,et al.  Tackling the Provenance Challenge one layer at a time , 2008 .

[30]  Carl Kesselman,et al.  What makes workflows work in an opportunistic environment? , 2006, Concurr. Comput. Pract. Exp..

[31]  M. Araújo,et al.  Choice of threshold alters projections of species range shifts under climate change , 2011 .

[32]  Jane Elith,et al.  POC plots: calibrating species distribution models with presence-only data. , 2010, Ecology.

[33]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[34]  Robert E. Wolfe,et al.  An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  Cláudio T. Silva,et al.  Making Computations and Publications Reproducible with VisTrails , 2012, Computing in Science & Engineering.

[36]  J. Elith,et al.  Sensitivity of predictive species distribution models to change in grain size , 2007 .

[37]  T. Rangel,et al.  Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change , 2009 .

[38]  Mirek Riedewald,et al.  Provenance in High-Energy Physics Workflows , 2008, Computing in Science & Engineering.

[39]  J Elith,et al.  A working guide to boosted regression trees. , 2008, The Journal of animal ecology.

[40]  Jeffrey T. Morisette,et al.  Bounding Species Distribution Models , 2011 .