A remark on “Dynamical behavior of a fractional three-species food chain model” [Nonlinear Dynamics, 95, February 2019]

[1]  Nikhil Pal,et al.  A “Double” fear effect in a tri-trophic food chain model , 2021, The European Physical Journal Plus.

[2]  Rana D. Parshad,et al.  A remark on " Global dynamics of a tritrophic food chain model subject to the Allee effects in the prey population with sexually reproductive generalized-type top predator" [Comp and Math Methods. 2019; E1079, pp. 1-23] , 2021, Comput. Math. Methods.

[3]  Alberto Cabada,et al.  Initial Value Problem For Nonlinear Fractional Differential Equations With ψ-Caputo Derivative Via Monotone Iterative Technique , 2020, Axioms.

[4]  S. Debnath,et al.  Global dynamics of a tritrophic food chain model subject to the Allee effects in the prey population with sexually reproductive generalized‐type top predator , 2019, Computational and Mathematical Methods.

[5]  Eric M. Takyi,et al.  A remark on “Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators” [Chaos, Solitons & Fractals 120 (2019) 1–16] , 2019, Chaos, Solitons & Fractals.

[6]  S. N. Raw,et al.  Study of a Leslie–Gower predator-prey model with prey defense and mutual interference of predators , 2019, Chaos, Solitons & Fractals.

[7]  J. Alidousti,et al.  Dynamical behavior of a fractional three-species food chain model , 2018, Nonlinear Dynamics.

[8]  J. Alidousti,et al.  Dynamical behavior of a fractional three-species food chain model , 2018, Nonlinear Dynamics.

[9]  Javad Alidousti,et al.  Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model , 2017 .

[10]  Matthew A. Beauregard,et al.  On "small" data blow-up in a three species food chain model , 2017, Comput. Math. Appl..

[11]  R. Naresh,et al.  Modelling and analysis of the effects of aerosols in making artificial rain , 2016, Modeling Earth Systems and Environment.

[12]  R. Parshad,et al.  A comment on “Mathematical study of a Leslie-Gower type tritrophic population model in a polluted environment” [Modeling in Earth Systems and Environment 2 (2016) 1–11] , 2016, Modeling Earth Systems and Environment.

[13]  R. K. Ghaziani,et al.  Stability analysis of a fractional order prey-predator system with nonmonotonic functional response , 2016 .

[14]  O. P. Misra,et al.  Mathematical study of a Leslie–Gower-type tritrophic population model in a polluted environment , 2016, Modeling Earth Systems and Environment.

[15]  S. Chakravarty,et al.  Stability analysis of a food chain model consisting of two competitive preys and one predator , 2015 .

[16]  M. Beauregard,et al.  Biological control via "ecological" damping: An approach that attenuates non-target effects , 2015, 1502.02010.

[17]  R. Parshad,et al.  A remark on ''Study of a Leslie-Gower-type tritrophic population model'' (Chaos, Solitons and Fractals 14 (2002) 1275-1293) , 2014, 1403.5597.

[18]  Jing Chen,et al.  Bifurcations of Invariant Tori in Predator-Prey Models with Seasonal Prey Harvesting , 2013, SIAM J. Appl. Math..

[19]  R. K. Upadhyay,et al.  Finite Time Blowup in a Realistic Food-Chain Model , 2013 .

[20]  Fathalla A. Rihan,et al.  Delay differential model for tumour–immune dynamics with HIV infection of CD4+ T-cells , 2013, Int. J. Comput. Math..

[21]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[22]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[23]  Chaoyang Wang,et al.  Bifurcation of a predator–prey model with disease in the prey , 2010 .

[24]  Carlos Castillo-Chavez,et al.  Role of Prey Dispersal and Refuges on Predator-Prey Dynamics , 2010, SIAM J. Appl. Math..

[25]  V. Lakshmikantham,et al.  Theory of Fractional Dynamic Systems , 2009 .

[26]  Sunita Gakkhar,et al.  Complex dynamic behavior in a food web consisting of two preys and a predator , 2005 .

[27]  M. A. Aziz-Alaoui,et al.  Study of a Leslie–Gower-type tritrophic population model , 2002 .

[28]  D. Post,et al.  The long and short of food-chain length , 2002 .

[29]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[30]  Sebastiaan A.L.M. Kooijman,et al.  Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain , 1999 .

[31]  Vikas Rai,et al.  Chaos: An Ecological Reality? , 1998 .

[32]  Sergio Rinaldi,et al.  Low- and high-frequency oscillations in three-dimensional food chain systems , 1992 .

[33]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[34]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[35]  H. El-Owaidy,et al.  Mathematical analysis of a food-web model , 1986, Appl. Math. Comput..

[36]  F. Rothe Global Solutions of Reaction-Diffusion Systems , 1984 .

[37]  R. Paine Food webs : linkage, interaction strength and community infrastructure , 1980 .

[38]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[39]  R. K. Ghaziani,et al.  Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann--Liouville derivatives , 2017 .

[40]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[41]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[42]  K. Diethelm,et al.  The Fracpece Subroutine for the Numerical Solution of Differential Equations of Fractional Order , 2002 .

[43]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[44]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .