Fast and reliable ab initio calculation of crystal field splittings in lanthanide complexes.

Ab initio calculations of crystal field splittings and magnetic properties of lanthanide complexes are usually performed using state-averaged complete active space self-consistent field (CASSCF) calculations and a subsequent spin-orbit calculation mixing the CASSCF wave functions (CASSCF/state interaction with spin-orbit coupling). Because this approach becomes very time-consuming for large molecules, simplifications have been proposed in the literature to determine the state-averaged orbitals by configuration-averaged Hartree-Fock (CAHF) instead of CASSCF. We present an approach which is an extension of the CAHF method. We combine the techniques of local density fitting with CAHF and achieve a significant speedup compared to CASSCF without loss in accuracy. To assess the performance of our method, we apply it to three well-known molecules, namely, Er[N(SiMe3)2]3, Er(trensal), and the double-decker (NBu4)+ [Er(Pc)2]-.

[1]  W. Wernsdorfer,et al.  Electrically driven nuclear spin resonance in single-molecule magnets , 2014, Science.

[2]  S. Koshihara,et al.  Lanthanide double-decker complexes functioning as magnets at the single-molecular level. , 2003, Journal of the American Chemical Society.

[3]  A. Caneschi,et al.  Magnetic anisotropy in a dysprosium/DOTA single-molecule magnet: beyond simple magneto-structural correlations. , 2012, Angewandte Chemie.

[4]  Liviu F Chibotaru,et al.  The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. , 2008, Angewandte Chemie.

[5]  K. Pedersen,et al.  Modifying the properties of 4f single-ion magnets by peripheral ligand functionalisation , 2014 .

[6]  T. Martínez,et al.  Ab Initio Multiple Spawning: Photochemistry from First Principles Quantum Molecular Dynamics , 2000 .

[7]  Dante Gatteschi,et al.  Magnetic anisotropy of dysprosium(III) in a low-symmetry environment: a theoretical and experimental investigation. , 2009, Journal of the American Chemical Society.

[8]  C. David Sherrill,et al.  Natural orbitals as substitutes for optimized orbitals in complete active space wavefunctions , 2004 .

[9]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[10]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[11]  F. Tuna,et al.  Toward Molecular 4f Single-Ion Magnet Qubits. , 2016, Journal of the American Chemical Society.

[12]  Jinkui Tang,et al.  Equatorially coordinated lanthanide single ion magnets. , 2014, Journal of the American Chemical Society.

[13]  Hans-Joachim Werner,et al.  A quadratically convergent MCSCF method for the simultaneous optimization of several states , 1981 .

[14]  F. Tuna,et al.  Molecular single-ion magnets based on lanthanides and actinides: Design considerations and new advances in the context of quantum technologies , 2017 .

[15]  B. le Guennic,et al.  Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation , 2014, Beilstein journal of nanotechnology.

[16]  M Ruben,et al.  Supramolecular spin valves. , 2011, Nature Materials.

[17]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[18]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[19]  Liviu F. Chibotaru,et al.  Spectroscopic determination of crystal field splittings in lanthanide double deckers , 2014 .

[20]  G. Granucci,et al.  Direct semiclassical simulation of photochemical processes with semiempirical wave functions , 2001 .

[21]  Florian Weigend,et al.  Error-Balanced Segmented Contracted Basis Sets of Double-ζ to Quadruple-ζ Valence Quality for the Lanthanides. , 2012, Journal of chemical theory and computation.

[22]  L. Chibotaru,et al.  Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. , 2012, The Journal of chemical physics.

[23]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[24]  A. Soncini,et al.  Configuration-averaged 4f orbitals in ab initio calculations of low-lying crystal field levels in lanthanide(iii) complexes. , 2015, Physical chemistry chemical physics : PCCP.

[25]  K. Freed,et al.  The improved virtual orbital-complete active space configuration interaction method, a “packageable” efficient ab initio many-body method for describing electronically excited states , 2001 .

[26]  Peter Pulay,et al.  Selection of active spaces for multiconfigurational wavefunctions. , 2015, The Journal of chemical physics.

[27]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the rare earth elements , 1989 .

[28]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290) , 1995 .

[29]  Benjamin G. Levine,et al.  Reducing the propensity for unphysical wavefunction symmetry breaking in multireference calculations of the excited states of semiconductor clusters. , 2013, The Journal of chemical physics.

[30]  Bernd Schimmelpfennig,et al.  The restricted active space (RAS) state interaction approach with spin-orbit coupling , 2002 .

[31]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[32]  Song Gao,et al.  Angular-resolved magnetometry beyond triclinic crystals: out-of-equilibrium studies of Cp*ErCOT single-molecule magnet. , 2013, Chemistry.

[33]  N. Edelstein,et al.  Electronic structures of highly-symmetrical compounds of f elements: Part 30. Simulation of the crystal field splitting pattern of tris(bis(trimethylsilyl)amido)erbium (III) , 1998 .

[34]  Edward G Hohenstein,et al.  Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states. , 2015, The Journal of chemical physics.

[35]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[36]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[37]  Hans-Joachim Werner,et al.  Parallel and Low-Order Scaling Implementation of Hartree-Fock Exchange Using Local Density Fitting. , 2016, Journal of chemical theory and computation.

[38]  L. Sorace,et al.  Beyond the anisotropy barrier: slow relaxation of the magnetization in both easy-axis and easy-plane Ln(trensal) complexes. , 2014, Chemical communications.

[39]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[40]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[41]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[42]  R. Mcweeny SCF theory for excited states , 1974 .

[43]  Peter Pulay,et al.  The unrestricted natural orbital–complete active space (UNO–CAS) method: An inexpensive alternative to the complete active space–self‐consistent‐field (CAS–SCF) method , 1989 .

[44]  Yan‐Zhen Zheng,et al.  On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. , 2016, Angewandte Chemie.

[45]  A. Soncini,et al.  Ab initio calculations as a quantitative tool in the inelastic neutron scattering study of a single-molecule magnet analogue. , 2016, Chemical communications.

[46]  M. Murugesu,et al.  Lanthanides and Actinides in Molecular Magnetism: Layfield/Lanthanides and Actinides in Molecular Magnetism , 2015 .

[47]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[48]  T. Martínez,et al.  Ab initio floating occupation molecular orbital-complete active space configuration interaction: an efficient approximation to CASSCF. , 2010, The Journal of chemical physics.

[49]  Felipe Zapata,et al.  Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table , 2016, J. Comput. Chem..

[50]  B. Flanagan,et al.  Ligand-field analysis of an Er(III) complex with a heptadentate tripodal N4O3 ligand. , 2001, Inorganic chemistry.

[51]  Andrea Caneschi,et al.  Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. , 2013, Angewandte Chemie.

[52]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[53]  Frederick R. Manby,et al.  Fast Hartree–Fock theory using local density fitting approximations , 2004 .

[54]  A. Powell,et al.  Strategies towards single molecule magnets based on lanthanide ions , 2009 .

[55]  P. Knowles,et al.  Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions , 2000 .

[56]  W. Wernsdorfer,et al.  Electronic read-out of a single nuclear spin using a molecular spin transistor , 2012, Nature.

[57]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[58]  L. Sorace,et al.  Determination of magnetic anisotropy in the LnTRENSAL complexes (Ln = Tb, Dy, Er) by torque magnetometry. , 2015, Inorganic chemistry.

[59]  M. Yamashita,et al.  Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex. , 2012, Chemistry, an Asian journal.