Intrinsically photosensitive retinal ganglion cells: classification, function and clinical implications.

PURPOSE OF REVIEW The discovery of a new class of intrinsically photosensitive retinal ganglion cells (ipRGCs) revealed their superior role for various nonvisual biological functions, including the pupil light reflex, and circadian photoentrainment. RECENT FINDINGS Recent works have identified and characterized several anatomically and functionally distinct ipRGC subtypes and have added strong new evidence for the accessory role of ipRGCs in the visual system in humans. SUMMARY This review summarizes current concepts related to ipRGC morphology, central connections and behavioural functions and highlights recent studies having clinical relevance to ipRGCs. Clinical implications of the melanopsin system are widespread, particularly as related to chronobiology.

[1]  V. Sheffield,et al.  Light aversion in mice depends on nonimage-forming irradiance detection. , 2010, Behavioral neuroscience.

[2]  M. Mirmiran,et al.  Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients , 1997, Biological Psychiatry.

[3]  Kazutomo Yunokuchi,et al.  Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses , 2010, Proceedings of the Royal Society B: Biological Sciences.

[4]  Debra J. Skene,et al.  Alerting effects of light are sensitive to very short wavelengths , 2006, Neuroscience Letters.

[5]  A. Lewy,et al.  Circadian rhythm sleep disorders: lessons from the blind. , 2001, Sleep medicine reviews.

[6]  C. Chiquet,et al.  Glaucoma Alters the Circadian Timing System , 2008, PloS one.

[7]  A. Wirz-Justice,et al.  Chronotherapeutics (light and wake therapy) as a class of interventions for affective disorders. , 2012, Handbook of clinical neurology.

[8]  Andrew J. Zele,et al.  The post‐illumination pupil response of melanopsin‐expressing intrinsically photosensitive retinal ganglion cells in diabetes , 2012, Acta ophthalmologica.

[9]  Donald C Hood,et al.  Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. , 2011, Investigative ophthalmology & visual science.

[10]  Clifford B. Saper,et al.  A neural mechanism for exacerbation of headache by light , 2010, Nature Neuroscience.

[11]  G. Cantalupo,et al.  Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. , 2010, Brain : a journal of neurology.

[12]  Andrew J. Zele,et al.  The Circadian Response of Intrinsically Photosensitive Retinal Ganglion Cells , 2011, PloS one.

[13]  David Fitzpatrick,et al.  Central Projections of Retinal Ganglion Cells , 2001 .

[14]  Annette E. Allen,et al.  Melanopsin-Based Brightness Discrimination in Mice and Humans , 2012, Current Biology.

[15]  Aki Kawasaki,et al.  Chromatic pupillometry in patients with retinitis pigmentosa. , 2011, Ophthalmology.

[16]  D. Berson,et al.  Morphology and mosaics of melanopsin‐expressing retinal ganglion cell types in mice , 2010, The Journal of comparative neurology.

[17]  D. Skene,et al.  Light‐Induced Melatonin Suppression in Humans with Polychromatic and Monochromatic Light , 2007, Chronobiology international.

[18]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[19]  Glen T. Prusky,et al.  Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision , 2010, Neuron.

[20]  T. Badea,et al.  Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs , 2011, Nature.

[21]  M. Gordijn,et al.  The effects of blue-enriched light treatment compared to standard light treatment in Seasonal Affective Disorder. , 2012, Journal of affective disorders.

[22]  Jun Lu,et al.  A Broad Role for Melanopsin in Nonvisual Photoreception , 2003, The Journal of Neuroscience.

[23]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[24]  H. Lund‐Andersen,et al.  Intrinsically photosensitive retinal ganglion cell function in relation to age: A pupillometric study in humans with special reference to the age-related optic properties of the lens , 2012, BMC Ophthalmology.

[25]  T. Badea,et al.  Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision , 2008, Nature.

[26]  Russell N Van Gelder,et al.  Melanopsin-dependent light avoidance in neonatal mice , 2010, Proceedings of the National Academy of Sciences.

[27]  Philippe Gagné,et al.  Impact of blue vs red light on retinal response of patients with seasonal affective disorder and healthy controls , 2011, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[28]  T. Dang-Vu,et al.  Supplemental Results , 2022 .

[29]  Dan Milea,et al.  Test–Retest Repeatability of the Pupil Light Response to Blue and Red Light Stimuli in Normal Human Eyes Using a Novel Pupillometer , 2011, Front. Neur..

[30]  H. Heller,et al.  Melanopsin as a Sleep Modulator: Circadian Gating of the Direct Effects of Light on Sleep and Altered Sleep Homeostasis in Opn4−/− Mice , 2009, PLoS biology.

[31]  Samer Hattar,et al.  Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions , 2011, Trends in Neurosciences.

[32]  Charles A Czeisler,et al.  High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. , 2003, The Journal of clinical endocrinology and metabolism.

[33]  P. de la Villa,et al.  Evaluation of functional integrity of the retinohypothalamic tract in advanced glaucoma using multifocal electroretinography and light-induced melatonin suppression. , 2010, Experimental eye research.

[34]  Paul D. Gamlin,et al.  Post-illumination pupil response in subjects without ocular disease. , 2010, Investigative ophthalmology & visual science.

[35]  M. Rollag,et al.  A missense variant ( P 10 L ) of the melanopsin ( Opn 4 ) gene is associated with Seasonal Affective Disorder , 2009 .

[36]  Satchidananda Panda,et al.  Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses , 2008, PloS one.

[37]  M. Münch,et al.  Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses. , 2012, Investigative ophthalmology & visual science.

[38]  Russell G Foster,et al.  The acute light-induction of sleep is mediated by OPN4-based photoreception , 2008, Nature Neuroscience.

[39]  S. Tsujimura,et al.  Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex , 2011, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[40]  D. Dijk,et al.  Alertness, mood and performance rhythm disturbances associated with circadian sleep disorders in the blind , 2008, Journal of sleep research.

[41]  L. P. Morin,et al.  Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: Bifurcation and melanopsin immunoreactivity , 2003, The Journal of comparative neurology.

[42]  K. Digre,et al.  Photophobia in a blind patient: An alternate visual pathway. Case report. , 2006, Journal of neurosurgery.

[43]  K. Yau,et al.  Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice , 2003, Science.

[44]  B. Roska,et al.  Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing , 2007, Current Biology.

[45]  Elisabeth Strohmayr,et al.  Chromatic pupillometry dissects function of the three different light-sensitive retinal cell populations in RPE65 deficiency. , 2012, Investigative ophthalmology & visual science.

[46]  K. Yau,et al.  Photon capture and signalling by melanopsin retinal ganglion cells , 2008, Nature.

[47]  E. Bos,et al.  Low-intensity blue-enriched white light (750 lux) and standard bright light (10 000 lux) are equally effective in treating SAD. A randomized controlled study , 2011, BMC psychiatry.

[48]  R. Foster,et al.  Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[49]  Robert J. Lucas,et al.  Characterization of an ocular photopigment capable of driving pupillary constriction in mice , 2001, Nature Neuroscience.

[50]  M. Rollag,et al.  A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. , 2009, Journal of affective disorders.

[51]  P. Kofuji,et al.  Diverse types of ganglion cell photoreceptors in the mammalian retina , 2012, Progress in Retinal and Eye Research.

[52]  Dick F Swaab,et al.  Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. , 2008, JAMA.

[53]  Aki Kawasaki,et al.  Pupillometric quantification of residual rod and cone activity in leber congenital amaurosis. , 2012, Archives of ophthalmology.

[54]  Philippe Denis,et al.  Melanopsin Bistability: A Fly's Eye Technology in the Human Retina , 2009, PloS one.

[55]  Paul D. Gamlin,et al.  The post-illumination pupil response is reduced in glaucoma patients. , 2011, Investigative ophthalmology & visual science.

[56]  Manuel Schabus,et al.  Spectral quality of light modulates emotional brain responses in humans , 2010, Proceedings of the National Academy of Sciences.

[57]  Pierre Maquet,et al.  Cerebral Cortex doi:10.1093/cercor/bhm007 Wavelength-Dependent Modulation of Brain Responses to a Working Memory Task by Daytime Light Exposure , 2007 .

[58]  Satchidananda Panda,et al.  The emerging roles of melanopsin in behavioral adaptation to light. , 2010, Trends in molecular medicine.

[59]  David Borsook,et al.  Cortical Projections of Functionally Identified Thalamic Trigeminovascular Neurons: Implications for Migraine Headache and Its Associated Symptoms , 2011, The Journal of Neuroscience.

[60]  Howard M. Cooper,et al.  Melanopsin-Dependent Nonvisual Responses: Evidence for Photopigment Bistability In Vivo , 2007, Journal of biological rhythms.

[61]  M. Moseley,et al.  Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina , 2007, Current Biology.

[62]  Aki Kawasaki,et al.  Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. , 2009, Ophthalmology.

[63]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells. , 2010, Physiological reviews.

[64]  Paul D. Gamlin,et al.  The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex , 2010, Vision Research.

[65]  J. Hannibal,et al.  Target areas innervated by PACAP-immunoreactive retinal ganglion cells , 2004, Cell and Tissue Research.

[66]  F. Scheer,et al.  Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. , 2006, Sleep.

[67]  G. E. Pickard,et al.  Intrinsically photosensitive retinal ganglion cells. , 2012, Reviews of physiology, biochemistry and pharmacology.

[68]  D A Newsome,et al.  Light suppresses melatonin secretion in humans. , 1980, Science.

[69]  Izzo,et al.  SUPPRESSION OF MELATONIN SECRETION IN SOME BLIND PATIENTS BY EXPOSURE TO BRIGHT LIGHT , 2001 .

[70]  Mirjam Münch,et al.  Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.

[71]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[72]  Hiroshi Momiji,et al.  Distinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance , 2010, Neuron.

[73]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[74]  R. Lucas,et al.  Melanopsin and inner retinal photoreception , 2009, Cellular and Molecular Life Sciences.

[75]  Stuart N. Peirson,et al.  Melanopsin: an exciting photopigment , 2008, Trends in Neurosciences.

[76]  A. Wirz-Justice,et al.  High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. , 2005, The Journal of clinical endocrinology and metabolism.

[77]  G. Vandewalle,et al.  Abnormal Hypothalamic Response to Light in Seasonal Affective Disorder , 2011, Biological Psychiatry.

[78]  D. Milea,et al.  Selective wavelength pupillometry in Leber hereditary optic neuropathy , 2010, Clinical & experimental ophthalmology.

[79]  Jun Lu,et al.  Melanopsin in cells of origin of the retinohypothalamic tract , 2001, Nature Neuroscience.

[80]  Shigang He,et al.  Change detection by thalamic reticular neurons , 2009, Nature Neuroscience.

[81]  Mirjam Münch,et al.  Evening exposure to blue light stimulates the expression of the clock gene PER2 in humans , 2006, The European journal of neuroscience.

[82]  Andrew J. Zele,et al.  Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. , 2011, Investigative ophthalmology & visual science.

[83]  Satchidananda Panda,et al.  Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting , 2002, Science.

[84]  J. Hannibal,et al.  Light and darkness regulate melanopsin in the retinal ganglion cells of the albino wistar rat , 2007, Journal of Molecular Neuroscience.

[85]  P. Kofuji,et al.  Differential Cone Pathway Influence on Intrinsically Photosensitive Retinal Ganglion Cell Subtypes , 2010, The Journal of Neuroscience.

[86]  R. V. Van Gelder,et al.  Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo* , 2012, The Journal of Biological Chemistry.

[87]  G. Brainard,et al.  Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor , 2001, The Journal of Neuroscience.

[88]  D. Skene,et al.  An action spectrum for melatonin suppression: evidence for a novel non‐rod, non‐cone photoreceptor system in humans , 2001, The Journal of physiology.

[89]  Aki Kawasaki,et al.  Characterization of pupil responses to blue and red light stimuli in autosomal dominant retinitis pigmentosa due to NR2E3 mutation. , 2012, Investigative ophthalmology & visual science.

[90]  J. Pokorny,et al.  Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells , 2007, Vision Research.

[91]  P. Kofuji,et al.  Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells , 2009, The Journal of Neuroscience.

[92]  Bruce F O'Hara,et al.  Role of Melanopsin in Circadian Responses to Light , 2002, Science.

[93]  G. E. Pickard,et al.  Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus , 2008, The European journal of neuroscience.