Sol-gel materials for smart electrochromic devices

Abstract Electrochromic devices have attracted increasing interest both from academia and industry. These devices are crucial for smart window technology. Currently the fabrication of large area devices for application in architectural glazing for the next generation of energy-efficient sustainable buildings is a hot research topic. This technological solution will reduce energy consumption in buildings, increase the indoor thermal/optical comfort for occupants, and improve outdoors view across different climate regions. Classical electrochromic devices rely on the use of electrochromic oxides. In this context the sol-gel process has emerged as an extremely versatile route to prepare, not only oxide coatings with improved performance, but also electrolytes with tailored properties. This chapter reviews the progress that has taken place since the first report of an all sol-gel electrochromic device was published, highlighting the latest achievements and main prospects of this exciting field of research.

[1]  Fengxia Geng,et al.  Fusing electrochromic technology with other advanced technologies: A new roadmap for future development , 2020 .

[2]  Abdeen Mustafa Omer,et al.  Energy use and environmental impacts: A general review , 2009 .

[3]  W. Thielemans,et al.  Synthesis of polycaprolactone: a review. , 2009, Chemical Society reviews.

[4]  J. Jansen,et al.  Development of a PCL-silica nanoparticles composite membrane for Guided Bone Regeneration. , 2018, Materials science & engineering. C, Materials for biological applications.

[5]  H. Ahn,et al.  Effects of Sb-doped SnO2–WO3 nanocomposite on electrochromic performance , 2019, Ceramics International.

[6]  Jenq-Neng Hwang,et al.  Multicolored Electrochromism in Polymers: Structures and Devices , 2004 .

[7]  David R. Rosseinsky,et al.  Electrochromic Systems and the Prospects for Devices , 2001 .

[8]  I. Dékány,et al.  Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method , 2011 .

[9]  Andris Azens,et al.  Facial warming and tinted helmet visors , 2006 .

[10]  S. Hollister Porous scaffold design for tissue engineering , 2005, Nature materials.

[11]  Je-Yong Choi,et al.  Preparation of a bioactive and degradable poly(ε-caprolactone)/silica hybrid through a sol–gel method , 2002 .

[12]  Anne C. Dillon,et al.  Metal-oxide films for electrochromic applications: present technology and future directions , 2010 .

[13]  Claes-Göran Granqvist,et al.  Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review , 2018 .

[14]  Kah-Yoong Chan,et al.  Tungsten Oxide (WO3) Films Prepared by Sol-Gel Spin-Coating Technique , 2018 .

[15]  R. Cloots,et al.  Straightforward prediction of the Ni1−xO layers stoichiometry by using optical and electrochemical measurements , 2017 .

[16]  G. Muralidharan,et al.  Optical, structural and electrochromic properties of nickel oxide films produced by sol–gel technique , 2011 .

[17]  A. Pawlicka,et al.  Influence of the Nb2O5 doping on the electrochemical properties of V2O5 thin films , 2017 .

[18]  J. Gomez,et al.  Electrochemical properties of thin films of V 2 O 5 doped with TiO 2 , 2018, Journal of Physics and Chemistry of Solids.

[19]  Elvira Fortunato,et al.  Luminescent Electrochromic Device Based on a Biohybrid Electrolyte Doped with a Mixture of Potassium Triflate and a Europium β-diketonate Complex , 2014 .

[20]  R. Devan,et al.  Electrochromic performance of sol–gel deposited NiO thin film , 2013 .

[21]  Pedro Barquinha,et al.  Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs , 2007 .

[22]  P. Bukovec,et al.  Sol-Gel Prepared NiO Thin Films for Electrochromic Applications , 2006 .

[23]  Hong Mo Yang,et al.  Electrochromic dynamic windows for office buildings , 2012 .

[24]  V. de Zea Bermudez,et al.  Sol-gel derived Li+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes , 2006 .

[25]  D. Dvorak,et al.  Solution-Deposited Solid-State Electrochromic Windows , 2018, iScience.

[26]  V. Bermudez,et al.  Optically Functional Di-Urethanesil Nanohybrids Containing Eu3+ Ions , 2004 .

[27]  D. Hutmacher,et al.  The return of a forgotten polymer : Polycaprolactone in the 21st century , 2009 .

[28]  S. Saha,et al.  Crystal Structure of 1-Butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure , 2003 .

[29]  Caroline Sunyong Lee,et al.  A review on fabrication processes for electrochromic devices , 2016 .

[30]  V. Patil,et al.  New process for synthesis of nickel oxide thin films and their characterization , 2011 .

[31]  Elvira Fortunato,et al.  Green Li+- and Er3+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for smart electrochromic windows , 2014 .

[32]  Andreas Stadler,et al.  Transparent Conducting Oxides—An Up-To-Date Overview , 2012, Materials.

[33]  C. Sanchez,et al.  Sol-gel synthesis of electrochromic films☆ , 1989 .

[34]  Eun Chang Choi,et al.  A study on characterization of nano-porous NiO thin film to improve electrical and optical properties for application to automotive glass , 2017 .

[35]  A. Pawlicka,et al.  Electrochemical properties of WO3 sol-gel thin films on indium tin oxide/poly(ethylene terephthalate) substrate , 2019, Thin Solid Films.

[36]  Deng Pan,et al.  Research on the Properties of Sol-Gel Deposited WO3-NiO Thin Films , 2017 .

[37]  Assaf Shapira,et al.  Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function , 2016, Nature materials.

[38]  L. Rodrigues,et al.  Di‐ureasil Hybrid Electrolytes Incorporating a New Proton Ionic Liquid , 2016 .

[39]  Satyen K. Deb,et al.  Reminiscences on the discovery of electrochromic phenomena in transition metal oxides , 1995 .

[40]  Chao Ma,et al.  Smart Sunglasses Based on Electrochromic Polymers , 2008 .

[41]  Elvira Fortunato,et al.  Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings , 2018, Energies.

[42]  Robin Wilson,et al.  Evaluation of the thermal and optical performance of thermochromic windows for office buildings in China , 2018, Energy and Buildings.

[43]  M. Rabbani,et al.  Effect of pyrolysis temperature on the electrical, optical, structural, and morphological properties of ITO thin films prepared by a sol-gel spin coating process , 2014 .

[44]  N. Nakamura,et al.  Hydrated ionic liquids enable both solubilisation and refolding of aggregated concanavalin A. , 2019, Chemical communications.

[45]  L. Alcácer,et al.  Sol−Gel Derived Urea Cross-Linked Organically Modified Silicates. 1. Room Temperature Mid-Infrared Spectra , 1999 .

[46]  A. Craievich,et al.  Local structure and near-infrared emission features of neodymium-based amine functionalized organic/inorganic hybrids. , 2005, The journal of physical chemistry. B.

[47]  Hyoun‐Ee Kim,et al.  Fabrication of strong, bioactive vascular grafts with PCL/collagen and PCL/silica bilayers for small-diameter vascular applications , 2019, Materials & Design.

[48]  Marco Casini,et al.  Active dynamic windows for buildings: A review , 2018 .

[49]  J. Tarascon,et al.  Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon , 2005 .

[50]  M. Amjoud,et al.  UV treatment for enhanced electrochromic properties of spin coated NiO thin films , 2019, Superlattices and Microstructures.

[51]  Fatma Z. Tepehan,et al.  Sol–gel deposited nickel oxide films for electrochromic applications , 2008 .

[52]  Wenjie Mai,et al.  Electrochromic energy storage devices , 2016 .

[53]  Suzanne Johnson,et al.  Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallizationElectronic supplementary information (ESI) available: packing diagrams for I and II; table of closest contacts for I, I-Br and II. See http://www.rsc.org/suppdata/cc/b3/b304 , 2003 .

[54]  Haekyoung Kim,et al.  Synthesis and characterization of facile industrially scalable and cost effective WO3 micro–nanostructures for electrochromic devices and photocatalyst , 2018, Ceramics International.

[55]  Thin films of V2O5/MoO3 and their applications in electrochromism , 2017, Journal of Solid State Electrochemistry.

[56]  B. Chowdari,et al.  Studies of Plasticized-Polymer Electrolytes Containing Mixed Zn(II) and Li(I) , 1992 .

[57]  D. Hwang,et al.  Eco-friendly method of fabricating indium-tin-oxide thin films using pure aqueous sol-gel , 2018 .

[58]  B. Scrosati,et al.  Investigation of mixed cation effects in PEO9Zn1−xCux(CF3SO3)2 polymer electrolytes , 1996 .

[59]  J. Reynolds,et al.  A new standard method to calculate electrochromic switching time , 2018, Solar Energy Materials and Solar Cells.

[60]  G. Qiao,et al.  Electron transport and electrochromic properties of sol-gel WO3 thin films: Effect of crystallinity , 2018 .

[61]  Elvira Fortunato,et al.  Three‐Mode Modulation Electrochromic Device with High Energy Efficiency for Windows of Buildings Located in Continental Climatic Regions , 2018, Advanced Sustainable Systems.

[62]  A. Rougier,et al.  Optimization of low value electrodeposition parameters of nano-structured NiO electrochromic thin films , 2019 .

[63]  D. Acosta,et al.  Electrochemically induced electrochromic properties in nickel thin films deposited by DC magnetron sputtering , 2006 .

[64]  M. Ishikawa,et al.  Ionic conductance of polymeric electrolytes containing lithium salts mixed with rare earth salts , 2000 .

[65]  B. Chowdari,et al.  Thermal and electrical characterization of PEO-based polymer electrolytes containing mixed Co(II) and Li(I)☆ , 1992 .

[66]  Alexander Kraft,et al.  Electrochromism: a fascinating branch of electrochemistry , 2018, ChemTexts.

[67]  L. C. Moreno,et al.  Structural, electrical and optical analysis of ITO thin films prepared by sol-gel , 2008, Microelectron. J..

[68]  M. Silva,et al.  Structure, thermal properties, conductivity and electrochemical stability of di-urethanesil hybrids doped with LiCF3SO3 , 2010 .

[69]  S. K. Deb,et al.  A novel electrophotographic system. , 1969, Applied optics.

[70]  A. Rougier,et al.  Low-Cost and Facile Synthesis of the Vanadium Oxides V2O3, VO2, and V2O5 and Their Magnetic, Thermochromic and Electrochromic Properties. , 2017, Inorganic chemistry.

[71]  Arild Gustavsen,et al.  Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities , 2013 .

[72]  K. Nishio,et al.  Electrochromic thin films prepared by sol-gel process , 2001 .

[73]  Xin Lin,et al.  Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum , 2017, Nature Energy.

[74]  C. Granqvist Electrochromics for smart windows: Oxide-based thin films and devices , 2014 .

[75]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[76]  Gaoyang Zhao,et al.  Facile preparation of FTO nanocrystalline films with excellent NIR electrochromic properties by a novel chelating solution route , 2018 .

[77]  Yang Wang,et al.  Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance. , 2015, Nano letters.

[78]  M. Silva,et al.  Sol–gel-derived POE/siliceous hybrids doped with Na+ ions: morphology and ionic conductivity , 2003 .

[79]  C. R. Becer,et al.  Hybrids of Silica/Poly(caprolactone coglycidoxypropyl trimethoxysilane) as Biomaterials , 2018 .

[80]  Elvira Fortunato,et al.  High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications , 2009 .

[81]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[82]  Elvira Fortunato,et al.  RF sputtered wide work function indium molybdenum oxide thin films for solar cell applications , 2009 .

[83]  V. Hasırcı,et al.  PCL and PCL-based materials in biomedical applications , 2018, Journal of biomaterials science. Polymer edition.

[84]  Luis Pérez-Lombard,et al.  A review on buildings energy consumption information , 2008 .

[85]  E. Fortunato,et al.  Electrochromic Device Composed of a Di-Urethanesil Electrolyte Incorporating Lithium Triflate and 1-Butyl-3-Methylimidazolium Chloride , 2020, Frontiers in Materials.

[86]  Adélio Rodrigues Gaspar,et al.  Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates , 2014 .

[87]  Y. Sung,et al.  The improving electrochromic performance of nickel oxide film using aqueous N,N-dimethylaminoethanol solution , 2012 .

[88]  R. David Rauh,et al.  Electrochromic windows: an overview , 1999 .

[89]  Niall R. Lynam,et al.  Automotive applications of chromogenic materials , 1990, Other Conferences.

[90]  C. Lampert Large-Area Smart Glass And Integrated Photovoltaics , 2003 .

[91]  Jorge Morgado,et al.  Highly Photostable Luminescent Poly(ε-caprolactone)siloxane Biohybrids Doped with Europium Complexes , 2007 .

[92]  Y. Hoshi,et al.  Electrical properties of tin-doped indium oxide thin films prepared by a dip coating , 2012 .

[93]  Elvira Fortunato,et al.  Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices , 2017 .

[94]  Tarik Kousksou,et al.  Energy consumption and efficiency in buildings: current status and future trends , 2015 .

[95]  G. Palmisano,et al.  Silica‐Based Sol–Gel Coatings: A Critical Perspective from a Practical Viewpoint , 2016 .

[96]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[97]  C. Durucan,et al.  Indium tin oxide thin films elaborated by sol-gel routes: The effect of oxalic acid addition on optoelectronic properties , 2013 .

[98]  P. Dubois,et al.  A new poly (ε-caprolactone) containing hybrid ceramer prepared by the sol-gel process , 1996 .

[99]  Bjørn Petter Jelle,et al.  State-of-the-art Building Integrated Photovoltaics , 2012 .

[100]  Dolf Gielen,et al.  The role of renewable energy in the global energy transformation , 2019, Energy Strategy Reviews.

[101]  J. Gomez,et al.  Li+ ions diffusion coefficient in V2O5:MoO3 Sol-Gel films , 2017 .

[102]  Michel A. Aegerter,et al.  Sol-gel chromogenic materials and devices , 1996 .

[103]  A. Tiwari,et al.  High mobility transparent conducting oxides for thin film solar cells , 2010 .

[104]  F. M. Gray,et al.  The mixed-salt effect in a polymer-based ionic conductor , 1989 .

[105]  Kah-Yoong Chan,et al.  Effect of film thickness on electrochromic performance of sol-gel deposited tungsten oxide (WO3) , 2019, Optical Materials.

[106]  U. Schubert Surface chemistry of carboxylato-substituted metal oxo clusters – Model systems for nanoparticles , 2017 .

[107]  E. Fortunato,et al.  Sol–gel-derived potassium-based di-ureasils for “smart windows” , 2007 .

[108]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[109]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[110]  A. Pawlicka,et al.  Electrochemical, UV–Vis, and microscopical characteristics of sol–gel CeO2:V2O5 thin film , 2018, Journal of Materials Science: Materials in Electronics.

[111]  D. Işık,et al.  Structural, electrochemical and optical comparisons of tungsten oxide coatings derived from tungsten powder-based sols , 2009 .

[112]  M. J. Smith,et al.  Solid State Ionics K +-doped poly (-caprolactone ) / siloxane biohybrid electrolytes for electrochromic devices , 2012 .

[113]  S. Sakka Preparation and properties of sol-gel coating films , 1994 .

[114]  A. Agrawal,et al.  Review of solid state electrochromic coatings produced using sol-gel techniques , 1993 .

[115]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[116]  Raffaella Buonsanti,et al.  Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. , 2011, Nano letters.

[117]  S. Badilescu,et al.  Electrochromic properties of sol–gel prepared hybrid transition metal oxides – A short review , 2017 .

[118]  E. Fortunato,et al.  Li(+)- and Eu(³+)-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. , 2011, ACS applied materials & interfaces.

[119]  Mauro Epifani,et al.  A dual band electrochromic device switchable across four distinct optical modes , 2018 .

[120]  Frederic Chaput,et al.  Optical Properties of Functional Hybrid Organic–Inorganic Nanocomposites , 2003 .

[121]  Justin A. Kerszulis,et al.  Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear. , 2015, ACS applied materials & interfaces.

[122]  Y. Liu,et al.  Improved electrochromic performance of WO 3 films with size controlled nanorods , 2018 .

[123]  H. Hamaguchi,et al.  Raman Spectra, Crystal Polymorphism, and Structure of a Prototype Ionic-liquid [bmim]Cl , 2003 .

[124]  A. Pawlicka,et al.  New thin films of NiO doped with V 2 O 5 for electrochromic applications , 2017 .

[125]  Aline Rougier,et al.  Pulsed Laser-Deposited nickel oxide thin films as electrochromic anodic materials , 2002 .

[126]  John X. J. Zhang,et al.  Microfluidics for silica biomaterials synthesis: opportunities and challenges. , 2019, Biomaterials science.

[127]  Glass: Sol–Gel Coatings , 2001 .

[128]  Qiuhong Wang,et al.  Novel preparation of ITO nanocrystalline films with plasmon electrochromic properties by the sol-gel method using benzoylacetone as a chemical modifier , 2018 .

[129]  D. Ganguli,et al.  Sol–gel electrochromic coatings and devices: A review , 2001 .

[130]  Sheng-Chang Wang,et al.  Existence of electrochromic reversibility at the 1000th cyclic voltammetry for spin coating WO3 film , 2017, Ionics.

[131]  R. Latham,et al.  EXAFS and related studies of mixed ion polymer electrolytes , 1992 .

[132]  Santiranjan Shannigrahi,et al.  A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment , 2017 .

[133]  E. Fortunato,et al.  High quality conductive gallium-doped zinc oxide films deposited at room temperature , 2004 .

[134]  J. Livage,et al.  Electrochromism of colloidal tungsten oxide , 1983 .

[135]  E. Fortunato,et al.  Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both , 2015 .

[136]  A. Pawlicka,et al.  Impact of Zr precursor on the electrochemical properties of V2O5 sol-gel films , 2019, Journal of Electroanalytical Chemistry.

[137]  L. Walder,et al.  Complementary hybrid electrodes for high contrast electrochromic devices with fast response , 2019, Nature Communications.