Mixed model based inference in structured additive regression

Due to the increasing availability of spatial or spatio-temporal regression data, models that allow to incorporate the special structure of such data sets in an appropriate way are highly desired in practice. A flexible modeling approach should not only be able to account for spatial and temporal correlations, but also to model further covariate effects in a semi- or nonparametric fashion. In addition, regression models for different types of responses are available and extensions require special attention in each of these cases. Within this thesis, numerous possibilities to model non-standard covariate effects such as nonlinear effects of continuous covariates, temporal effects, spatial effects, interaction effects or unobserved heterogeneity are reviewed and embedded in the general framework of structured additive regression. Beginning with exponential family regression, extensions to several types of multicategorical responses and the analysis of continuous survival times are described. A new inferential procedure based on mixed model methodology is introduced, allowing for a unified treatment of the different regression problems. Estimation of the regression coefficients is based on penalized likelihood, whereas smoothing parameters are estimated using restricted maximum likelihood or marginal likelihood. In several applications and simulation studies, the new approach turns out to be a promising alternative to competing methodology, especially estimation based on Markov Chain Monte Carlo simulation techniques.

[1]  Håvard Rue,et al.  A Tutorial on Image Analysis , 2003 .

[2]  H. Künsch Gaussian Markov random fields , 1979 .

[3]  Göran Kauermann,et al.  Penalized spline smoothing in multivariable survival models with varying coefficients , 2005, Comput. Stat. Data Anal..

[4]  Rob J Hyndman,et al.  Mixed Model-Based Hazard Estimation , 2002 .

[5]  Michael G. Schimek,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2000 .

[6]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[7]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[8]  Peter J. Diggle,et al.  An Introduction to Model-Based Geostatistics , 2003 .

[9]  A. Cross,et al.  Zambia Demographic and Health Survey 1992 , 1993 .

[10]  Paul H. C. Eilers,et al.  Direct generalized additive modeling with penalized likelihood , 1998 .

[11]  Geoadditive hazard regression for interval censored survival times , 2005 .

[12]  A. Gelfand,et al.  Spatial modeling and prediction under stationary non-geometric range anisotropy , 2003, Environmental and Ecological Statistics.

[13]  L. Fahrmeir,et al.  Multivariate statistische Verfahren , 1984 .

[14]  Stefan Bender,et al.  Semiparametric Bayesian Time-Space Analysis of Unemployment Duration , 2000 .

[15]  L. Fahrmeir,et al.  Geoadditive Survival Models , 2006 .

[16]  Nigeria.,et al.  Nigeria Demographic and Health Survey 2008 , 2004 .

[17]  Osuna Echavarría,et al.  Semiparametric Bayesian Count Data Models , 2004 .

[18]  G. Wahba Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .

[19]  L. Fahrmeir,et al.  Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data , 2001 .

[20]  M. Durbán,et al.  Flexible smoothing with P-splines: a unified approach , 2002 .

[21]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[22]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[23]  Dani Gamerman,et al.  Space-varying regression models: specifications and simulation , 2001, Comput. Stat. Data Anal..

[24]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[25]  D. Ruppert,et al.  Likelihood ratio tests in linear mixed models with one variance component , 2003 .

[26]  Peter Green,et al.  A primer in Markov Chain Monte Carlo , 2001 .

[27]  B. Carlin,et al.  Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. , 2003, Biostatistics.

[28]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[29]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[30]  Louise Ryan,et al.  Modeling Spatial Survival Data Using Semiparametric Frailty Models , 2002, Biometrics.

[31]  Göran Kauermann,et al.  Modeling Microarray Data Using a Threshold Mixture Model , 2004, Biometrics.

[32]  K. Ballman Discrete Choice Methods With Simulations , 2005 .

[33]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[34]  Matt P. Wand,et al.  Smoothing and mixed models , 2003, Comput. Stat..

[35]  Bradley P. Carlin,et al.  Hierarchical Multivarite CAR Models for Spatio-Temporally Correlated Survival Data , 2002 .

[36]  R. Tibshirani,et al.  Bayesian backfitting (with comments and a rejoinder by the authors , 2000 .

[37]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[38]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[39]  H. Rue Fast Sampling of Gaussian Markov Random Fields with Applications , 2000 .

[40]  Daowen Zhang Generalized Linear Mixed Models with Varying Coefficients for Longitudinal Data , 2004, Biometrics.

[41]  D. Cox,et al.  Complex stochastic systems , 2000 .

[42]  Dani Gamerman,et al.  Sampling from the posterior distribution in generalized linear mixed models , 1997, Stat. Comput..

[43]  Jesper Møller,et al.  Spatial statistics and computational methods , 2003 .

[44]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[45]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[46]  P. Green Penalized Likelihood for General Semi-Parametric Regression Models. , 1987 .

[47]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[48]  Geoffrey M. Laslett,et al.  Kriging and Splines: An Empirical Comparison of their Predictive Performance in Some Applications , 1994 .

[49]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[50]  Geert Molenberghs,et al.  The Use of Score Tests for Inference on Variance Components , 2003, Biometrics.

[51]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[52]  Michael Unser,et al.  On the asymptotic convergence of B-spline wavelets to Gabor functions , 1992, IEEE Trans. Inf. Theory.

[53]  Ciprian M. Crainiceanu,et al.  Restricted Likelihood Ratio Tests in Nonparametric Longitudinal Models Short title: Restricted LR Tests in Longitudinal Models , 2004 .

[54]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[55]  P. Diggle,et al.  Model-based geostatistics (with discussion). , 1998 .

[56]  Douglas W. Nychka,et al.  Design of Air-Quality Monitoring Networks , 1998 .

[57]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[58]  Rupert G. Miller,et al.  Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.

[59]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[61]  Andreas Brezger,et al.  Generalized structured additive regression based on Bayesian P-splines , 2006, Comput. Stat. Data Anal..

[62]  J. Palmgren,et al.  Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood , 2000, Biometrics.

[63]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[64]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[65]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[66]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[67]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[68]  Zehua Chen Fitting Multivariate Regression Functions by Interaction Spline Models , 1993 .

[69]  Volker Schmid Bayesianische Raum-Zeit-Modellierung in der Epidemiologie , 2004 .

[70]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[71]  G. Tutz,et al.  Semiparametric modelling of multicategorical data , 2004 .

[72]  Modelling tooth emergence data based on multivariate interval‐censored data , 2002, Statistics in medicine.

[73]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[74]  E. Lesaffre,et al.  Accelerated Failure Time Model for Arbitrarily Censored Data With Smoothed Error Distribution , 2005 .

[75]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[76]  D. Zimmerman Another look at anisotropy in geostatistics , 1993 .

[77]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[78]  G. Kauermann A note on smoothing parameter selection for penalized spline smoothing , 2005 .

[79]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[80]  Leonhard Held,et al.  Simultaneous Posterior Probability Statements From Monte Carlo Output , 2004 .

[81]  G. Tutz Generalized Semiparametrically Structured Ordinal Models , 2003, Biometrics.

[82]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[83]  D. Harrington,et al.  Counting Processes and Survival Analysis , 1991 .

[84]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[85]  James W. Wisnowski,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2002 .

[86]  Ulrich Stadtmüller,et al.  Spatial Smoothing of Geographically Aggregated Data, with Application to the Construction of Incidence Maps , 1997 .

[87]  Douglas W. Nychka,et al.  Case Studies in Environmental Statistics , 1998 .

[88]  Thomas Kneib,et al.  Structured additive regression for categorical space-time data: a mixed model approach. , 2006, Biometrics.

[89]  C. Holmes,et al.  Bayesian auxiliary variable models for binary and multinomial regression , 2006 .

[90]  B. Marx,et al.  Multivariate calibration with temperature interaction using two-dimensional penalized signal regression , 2003 .

[91]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[92]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[93]  Andreas Ziegler,et al.  Zur Simulated Maximum-Likelihood-Schätzung von Mehrperioden-Mehralternativen-Probitmodellen , 2000 .

[94]  Douglas W. Nychka,et al.  FUNFITS: data analysis and statistical tools for estimating functions , 2008 .

[95]  M. Hansen,et al.  Spline Adaptation in Extended Linear Models , 1998 .

[96]  D Commenges,et al.  Inference for multi-state models from interval-censored data , 2002, Statistical methods in medical research.

[97]  UsingSmoothing SplinesbyXihong Liny,et al.  Inference in Generalized Additive Mixed Models , 1999 .

[98]  Ludwig Fahrmeir,et al.  Semiparametric Analysis of the Socio-Demographic and Spatial Determinants of Undernutrition in Two African Countries , 2001 .

[99]  C. Biller Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models , 2000 .

[100]  Dongchu Sun,et al.  PROPRIETY OF POSTERIORS WITH IMPROPER PRIORS IN HIERARCHICAL LINEAR MIXED MODELS , 2001 .

[101]  N. Breslow,et al.  Bias Correction in Generalized Linear Mixed Models with Multiple Components of Dispersion , 1996 .

[102]  T. Kneib,et al.  BayesX: Analyzing Bayesian Structural Additive Regression Models , 2005 .

[103]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[104]  Ludwig Fahrmeir,et al.  Bayesian varying-coefficient models using adaptive regression splines , 2001 .

[105]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[106]  N. Keiding,et al.  Multi-state models for event history analysis , 2002, Statistical methods in medical research.

[107]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[108]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[109]  B. Carlin,et al.  Semiparametric spatio‐temporal frailty modeling , 2003 .

[110]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[111]  Emmanuel Lesaffre,et al.  A Bayesian analysis of multivariate doubly-interval-censored dental data. , 2005, Biostatistics.

[112]  J. Besag,et al.  Bayesian analysis of agricultural field experiments , 1999 .

[113]  L. Fahrmeir,et al.  A mixed model approach for structured hazard regression , 2004 .

[114]  Ralf Bender,et al.  Generating survival times to simulate Cox proportional hazards models , 2005, Statistics in medicine.

[115]  D. Stram,et al.  Variance components testing in the longitudinal mixed effects model. , 1994, Biometrics.

[116]  Robert Kohn,et al.  Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression , 2003 .

[117]  T. Cai,et al.  Hazard Regression for Interval‐Censored Data with Penalized Spline , 2003, Biometrics.

[118]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[119]  C. Kooperberg,et al.  Hazard regression with interval-censored data. , 1997, Biometrics.

[120]  R. Henderson,et al.  Modeling Spatial Variation in Leukemia Survival Data , 2002 .

[121]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .