Cohesive laws describing the interface behaviour of iron/precipitate interfaces under mixed loading conditions

[1]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[2]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[3]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[4]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[5]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[6]  W. Beckert,et al.  Fracture mechanical characterisation of mixed-mode toughness of thermoplast/glass interfaces , 2000 .

[7]  David L. McDowell,et al.  Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations , 2004 .

[8]  Graeme Ackland,et al.  Development of an interatomic potential for phosphorus impurities in α-iron , 2004 .

[9]  D. McDowell,et al.  Effect of deformation path sequence on the behavior of nanoscale copper bicrystal interfaces , 2005 .

[10]  Edward H. Glaessgen,et al.  Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum , 2006 .

[11]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[12]  D. McDowell,et al.  Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium , 2007 .

[13]  Paulo S. Branicio,et al.  Structural characterization of deformed crystals by analysis of common atomic neighborhood , 2007, Comput. Phys. Commun..

[14]  Jonathan A. Zimmerman,et al.  Molecular dynamics simulation based cohesive surface representation of mixed mode fracture , 2008 .

[15]  Edward H. Glaessgen,et al.  Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding , 2008, Journal of Materials Science.

[16]  R. Jones,et al.  Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch , 2009 .

[17]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[18]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[19]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[20]  Yung C. Shin,et al.  Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics , 2011 .

[21]  Steven J. Plimpton,et al.  Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh , 2012, Comput. Phys. Commun..

[22]  Mohammed Cherkaoui,et al.  An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth , 2013 .

[23]  W. Michael Brown,et al.  Implementing molecular dynamics on hybrid high performance computers - Three-body potentials , 2013, Comput. Phys. Commun..

[24]  Guillaume Parry,et al.  Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis , 2014 .

[25]  G. Zavarise,et al.  Coupled cohesive zone models for mixed-mode fracture: A comparative study , 2015 .

[26]  Barend J. Thijsse,et al.  Dislocation impacts on iron/precipitate interfaces under shear loading , 2016 .

[27]  P. Gupta,et al.  Molecular dynamics based cohesive zone modeling of Al (metal)–Cu50Zr50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms , 2016 .

[28]  B. Thijsse,et al.  Cohesive law describing crack growth at iron/precipitate interfaces , 2017 .

[29]  B. Thijsse,et al.  Cohesive laws for shearing of iron/precipitate interfaces , 2018, Computational Materials Science.