Intertwined development and formal verification of a 60/spl times/ bus model

We describe a project in which the IBM/Motorola 60/spl times/ bus protocol was incrementally modeled at an abstract level in Verilog and verified using Motorola's Verdict model checker. The primary purpose of the modeling activity was to acquaint verification personnel with details of the 60/spl times/ bus protocol and to document specific properties of the 60/spl times/ bus that are necessary to guarantee compliance with hand-written protocol documentation. Our Verilog 60/spl times/ bus model documents the 60/spl times/ bus protocol for other Motorola business units.

[1]  J. S. Moore,et al.  A Precise Description of the ACL2 Logic , 1998 .

[2]  H. Jerome Keisler,et al.  The Strength of Nonstandard Methods in Arithmetic , 1984, J. Symb. Log..

[3]  Matt Kaufmann,et al.  Blunt and topless end extensions of models of set theory , 1983, Journal of Symbolic Logic.

[4]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[5]  James H. Schmerl,et al.  Saturation and simple extensions of models of peano arithmetic , 1984, Ann. Pure Appl. Log..

[6]  Saharon Shelah,et al.  The Hanf number of stationary logic , 1986, Notre Dame J. Formal Log..

[7]  J. Strother Moore,et al.  An Industrial Strength Theorem Prover for a Logic Based on Common Lisp , 1997, IEEE Trans. Software Eng..

[8]  Matt Kaufmann A New Omitting Types Theorem for L(Q) , 1979, J. Symb. Log..

[9]  Matt Kaufmann,et al.  A prototype theorem-prover for a higher-order functional language , 1985, SOEN.

[10]  Matt Kaufmann Set Theory With a Filter Quantifier , 1983, J. Symb. Log..

[11]  Journal of automated reasoning , 1986 .

[12]  Tiziano Villa,et al.  VIS: A System for Verification and Synthesis , 1996, CAV.

[13]  Matt Kaufmann Mutually generic classes and incompatible expansions , 1984 .

[14]  Matt Kaufmann An Interactive Enhancement to the Boyer-Moore Theorem Prover , 1988, CADE.

[15]  M. Kaufmann Chapter IV: The Quantifier "There Exist Uncountably Many" and Some of Its Relatives , 1985 .

[16]  James H. Schmerl,et al.  Remarks on Weak Notions of Saturation in Models of Peano Arithmetic , 1987, J. Symb. Log..

[17]  Jon Barwise,et al.  A correction to “stationary logic” , 1981 .

[18]  C. Eisner,et al.  RuleBase: an industry-oriented formal verification tool , 1996, 33rd Design Automation Conference Proceedings, 1996.

[19]  Carl Pixley,et al.  Design Constraints in Symbolic Model Checking , 1998, CAV.

[20]  Matt Kaufmann,et al.  A Mechanically Checked Proof of the , 1998 .

[21]  Evangelos Kranakis,et al.  Definable Ultrapowers and Ultrafilters over Admissible Ordinals , 1984, Math. Log. Q..

[22]  Matt Kaufmann Filter logics: Filters on ω1 , 1981 .

[23]  C. Pixley,et al.  Formal verification of a commercial serial bus interface , 1995, Proceedings International Phoenix Conference on Computers and Communications.

[24]  Saharon Shelah,et al.  A nonconservativity result on global choice , 1984, Ann. Pure Appl. Log..

[25]  Matt Kaufmann,et al.  On existence of Σn end extensions , 1981 .

[26]  Matt Kaufmann,et al.  A Parallel Version of the Boyer-Moore Prover , 1989 .

[27]  Matt Kaufmann,et al.  An Informal Discussion Of Issues In Mechanically-assisted Reasoning , 1991, 1991., International Workshop on the HOL Theorem Proving System and Its Applications.

[28]  Matt Kaufmann On expandability of models of arithmetic and set theory to models of weak second-order theories , 1984 .

[29]  Saharon Shelah,et al.  On random models of finite power and monadic logic , 1985, Discrete Mathematics.

[30]  Matt Kaufmann Some remarks on equivalence in infinitary and stationary logic , 1984, Notre Dame J. Formal Log..

[31]  Ásgeir Th. Eiríksson Integrating formal verification methods with a conventional project design flow , 1996, DAC '96.

[32]  Matt Kaufmann,et al.  Should We Begin a Standardization Process for Interface Logics , 1992 .

[33]  Matt Kaufmann A note on the Hanf number of second-order logic , 1985, Notre Dame J. Formal Log..

[34]  Matt Kaufmann Combining an Interpeter-Based Approach to Software Verification with Verification Condition Generation , 1994 .

[35]  Vladimir Lifschitz,et al.  Artificial intelligence and mathematical theory of computation: papers in honor of John McCarthy , 1991 .

[36]  Jae-Young Jang,et al.  Formal verification of FIRE: a case study , 1997, DAC.

[37]  Matt Kaufmann,et al.  Quantification in Nqthm: A Recognizer and Some Constructive Implementations , 1992 .

[38]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.