A new library of structured semidefinite programming instances

Solvers for semidefinite programming (SDP) have evolved a great deal in the last decade, and their development continues. In order to further support and encourage this development, we present a new test set of SDP instances. These instances arise from recent applications of SDP in the coding theory, computational geometry, graph theory and structural design. Most of these instances have a special structure that may be exploited during a pre-processing phase, e.g. algebraic symmetry, or low rank in the constraint matrices.

[1]  J. Zowe,et al.  Free material optimization: recent progress , 2008 .

[2]  K. Murota,et al.  A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components , 2010 .

[3]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[4]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[5]  Etienne de Klerk,et al.  Improved Bounds for the Crossing Numbers of Km, n and Kn , 2004, SIAM J. Discret. Math..

[6]  Yoshihiro Kanno,et al.  A numerical algorithm for block-diagonal decomposition of matrix $${*}$$-algebras with application to semidefinite programming , 2010 .

[7]  Etienne de Klerk,et al.  On Semidefinite Programming Relaxations of the Traveling Salesman Problem , 2007, SIAM J. Optim..

[8]  Alexander Schrijver,et al.  New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.

[9]  Alexander Schrijver,et al.  Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..

[10]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[11]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[12]  Michael Stingl,et al.  On the solution of large-scale SDP problems by the modified barrier method using iterative solvers , 2009, Math. Program..

[13]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[14]  Katsuki Fujisawa,et al.  Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..

[15]  Kurt M. Anstreicher,et al.  Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..

[16]  Renata Sotirov,et al.  On the Lovasz O-Number of Almost Regular Graphs with Application to Erdos-Renyi Graphs , 2006 .

[17]  E. D. Klerk,et al.  Exploiting group symmetry in truss topology optimization , 2007 .

[18]  Etienne de Klerk,et al.  Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem , 2007, Math. Program..

[19]  Arkadi Nemirovski,et al.  Free Material Design via Semidefinite Programming: The Multiload Case with Contact Conditions , 1999, SIAM Rev..

[20]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[21]  Brian Borchers,et al.  A library of semidefinite programming test problems , 1999 .

[22]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[23]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[24]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[25]  N. Katoh,et al.  Group Symmetry in Interior-Point Methods for Semidefinite Program , 2001 .

[26]  Christoph Helmberg,et al.  Numerical evaluation of SBmethod , 2003, Math. Program..

[27]  Etienne de Klerk,et al.  On the Lovász theta-number of almost regular graphs with application to Erdos-Rényi graphs , 2009, Eur. J. Comb..

[28]  Monique Laurent,et al.  Strengthened semidefinite programming bounds for codes , 2007, Math. Program..

[29]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[30]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[31]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[32]  Arkadi Nemirovski,et al.  Free Material Design via Semidefinite Programming: The Multiload Case with Contact Conditions , 1999, SIAM J. Optim..

[33]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[34]  C. Zarankiewicz On a problem of P. Turan concerning graphs , 1955 .