Statistical Image Object Recognition using Mixture Densities

In this paper, we present a mixture density based approach to invariant image object recognition. To allow for a reliable estimation of the mixture parameters, the dimensionality of the feature space is optionally reduced by applying a robust variant of linear discriminant analysis. Invariance to affine transformations is achieved by incorporating invariant distance measures such as tangent distance. We propose an approach to estimating covariance matrices with respect to image variabilities as well as a new approach to combined classification, called the virtual test sample method. Application of the proposed classifier to the well known US Postal Service handwritten digits recognition task (USPS) yields an excellent error rate of 2.2%. We also propose a simple, but effective approach to compensate for local image transformations, which significantly increases the performance of tangent distance on a database of 1,617 medical radiographs taken from clinical daily routine.

[1]  Hermann Ney,et al.  Automatic Classification of Red Blood Cells Using Gaussian Mixture Densities , 2000, Bildverarbeitung für die Medizin.

[2]  Hermann Ney,et al.  A Probabilistic View on Tangent Distance , 2000, DAGM-Symposium.

[3]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[4]  Bernhard Schölkopf,et al.  Prior Knowledge in Support Vector Kernels , 1997, NIPS.

[5]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[7]  Hermann Ney,et al.  Structured Covariance Matrices for Statistical Image Object Recognition , 2000, DAGM-Symposium.

[8]  Thomas M. Lehmanna,et al.  Header for SPIE use Content-Based Image Retrieval in Medical Applications: A Novel Multi-Step Approach , 2022 .

[9]  JEFFREY WOOD,et al.  Invariant pattern recognition: A review , 1996, Pattern Recognit..

[10]  Josef Kittler,et al.  Combining classifiers , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[11]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[12]  Yann LeCun,et al.  Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation , 1996, Neural Networks: Tricks of the Trade.

[13]  Thomas Martin Deserno,et al.  Classification of Radiographs in the 'Image Retrieval in Medical Applications' - System , 2000, RIAO.

[14]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[15]  Patrice Y. Simard,et al.  Learning Prototype Models for Tangent Distance , 1994, NIPS.

[16]  Hermann Ney,et al.  Experiments with an extended tangent distance , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[17]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  Bernt Schiele,et al.  Probabilistic object recognition using multidimensional receptive field histograms , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[20]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[21]  Hermann Ney,et al.  A Mixture Density Based Approach to Object Recognition for Image Retrieval , 2000, RIAO.

[22]  Hermann Ney,et al.  Invariant image object recognition using mixture densities , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[23]  William H. Press,et al.  Numerical recipes in C , 2002 .

[24]  Hermann Ney,et al.  Discriminative Training of Gaussian Mixtures for Image Object Recognition , 1999, DAGM-Symposium.

[25]  Jörg Dahmen,et al.  Invariant image object recognition using Gaussian mixture densities , 2001 .

[26]  Yann LeCun,et al.  Efficient Pattern Recognition Using a New Transformation Distance , 1992, NIPS.

[27]  Harris Drucker,et al.  Boosting Performance in Neural Networks , 1993, Int. J. Pattern Recognit. Artif. Intell..

[28]  Thomas Martin Deserno,et al.  Content-based image retrieval in medical applications: a novel multistep approach , 1999, Electronic Imaging.

[29]  Maurice Milgram,et al.  Transformation Invariant Autoassociation with Application to Handwritten Character Recognition , 1994, NIPS.

[30]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[31]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[32]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[33]  Bernard Victorri,et al.  Transformation invariance in pattern recognition: Tangent distance and propagation , 2000 .

[34]  Geoffrey E. Hinton,et al.  Recognizing Handwritten Digits Using Mixtures of Linear Models , 1994, NIPS.