Research Progress on Femtosecond Laser Poling of Ferroelectrics

Ferroelectric domain engineering has wide applications in optical and electronic industries. Compared with traditional electric field poling, femtosecond laser poling has many advantages, such as higher fabrication resolution, 3D engineering applicability, and lower costs of production. In this review, the recent research progress on ferroelectric domain engineering with femtosecond laser pulses is presented. We show the latest results, including complex domain structures fabricated in various kinds of ferroelectric crystals, and discuss the influence of laser poling parameters and conditions on the morphologies of inverted domains and their physical mechanisms. The technical challenges to overcome in future are also briefly discussed.

[1]  Xiaoliang Wang,et al.  Nonlocal erasing and writing of ferroelectric domains using a femtosecond laser in lithium niobate. , 2024, Optics letters.

[2]  Shan Liu,et al.  Nonlinear generation of an optical bottle beam in domain-engineered ferroelectric crystals. , 2023, Optics letters.

[3]  Xin Chen,et al.  Influences of focusing conditions on optical poling in lithium niobate using a 1035  nm femtosecond fiber laser. , 2023, Applied optics.

[4]  Bin Wang,et al.  Highly Efficient 3D Nonlinear Photonic Crystals in Ferroelectrics , 2023, Advanced Optical Materials.

[5]  D. K. Kuznetsov,et al.  Thermally assisted growth of bulk domains created by femtosecond laser in magnesium doped lithium niobate , 2023, Ferroelectrics.

[6]  W. Krolikowski,et al.  Ferroelectric domain engineering with femtosecond pulses of different wavelengths. , 2023, Optics express.

[7]  Q. Cao,et al.  Domain growth driven by a femtosecond laser in lithium niobate crystal. , 2022, Optics letters.

[8]  Q. Cao,et al.  Manipulation of ferroelectric domain inversion and growth by optically induced 3D thermoelectric field in lithium niobate , 2022, Applied Physics Letters.

[9]  Xinyuan Fang,et al.  Femtosecond laser writing of lithium niobate ferroelectric nanodomains , 2022, Nature.

[10]  H. Tian,et al.  Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches , 2022, Science.

[11]  W. Krolikowski,et al.  Quasi-phase matched second harmonic generation in a PMN-38PT crystal. , 2022, Optics letters.

[12]  Zhuo Xu,et al.  Optical Induction and Erasure of Ferroelectric Domains in Tetragonal PMN‐38PT Crystals , 2021, Advanced Optical Materials.

[13]  W. Krolikowski,et al.  Localized Ferroelectric Domains via Laser Poling in Monodomain Calcium Barium Niobate Crystal , 2021, Laser & Photonics Reviews.

[14]  P. Lu,et al.  Nonlinear Talbot self-healing in periodically poled LiNbO 3 crystal [Invited] , 2021 .

[15]  Shi-ning Zhu,et al.  Nonlinear photonic crystals: from 2D to 3D , 2021 .

[16]  P. Lu,et al.  Nonlinear detour phase holography. , 2021, Nanoscale.

[17]  W. Krolikowski,et al.  Nonlinear Volume Holography in 3D Nonlinear Photonic Crystals , 2020, Laser & Photonics Reviews.

[18]  P. Lu,et al.  Smart optically induced nonlinear photonic crystals for frequency conversion and control , 2020 .

[19]  Linze Li,et al.  Real-time studies of ferroelectric domain switching: a review , 2019, Reports on progress in physics. Physical Society.

[20]  P. Lu,et al.  Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals , 2019, Nature Communications.

[21]  A. Gruverman,et al.  Piezoresponse force microscopy and nanoferroic phenomena , 2019, Nature Communications.

[22]  C. Denz,et al.  Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography , 2018, Applied Physics Letters.

[23]  Shi-ning Zhu,et al.  Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal , 2018, Nature Photonics.

[24]  S. Liu,et al.  Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate , 2018, Nature Photonics.

[25]  W. Krolikowski,et al.  Broadband enhancement of Čerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal. , 2018, Optics express.

[26]  Arnan Mitchell,et al.  Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits , 2018 .

[27]  X. Hou,et al.  Femtosecond Laser Direct Writing of Porous Network Microstructures for Fabricating Super‐Slippery Surfaces with Excellent Liquid Repellence and Anti‐Cell Proliferation , 2018 .

[28]  C. Denz,et al.  3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching , 2017, Advanced materials.

[29]  A. Cutolo,et al.  Nanosphere lithography for optical fiber tip nanoprobes , 2016, Light: Science & Applications.

[30]  M. Reinhardt,et al.  Optical Writing of Magnetic Properties by Remanent Photostriction. , 2016, Physical review letters.

[31]  J. Büchi,et al.  Reversible optical switching of antiferromagnetism in TbMnO3 , 2016, Nature Photonics.

[32]  A. Boes,et al.  Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. , 2016, Optics letters.

[33]  John E. Bowers,et al.  Thin film wavelength converters for photonic integrated circuits , 2016 .

[34]  D. Dolfi,et al.  Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3 , 2016, Nature Communications.

[35]  W. Krolikowski,et al.  Ferroelectric domain engineering by focused infrared femtosecond pulses , 2015 .

[36]  B. Luther-Davies,et al.  Nonlinear diffraction in orientation-patterned semiconductors. , 2015, Optics express.

[37]  A. Boes,et al.  UV Direct Write Metal Enhanced Redox (MER) Domain Engineering for Realization of Surface Acoustic Devices on Lithium Niobate , 2014 .

[38]  W. Krolikowski,et al.  Calcium barium niobate as a functional material for broadband optical frequency conversion. , 2014, Optics letters.

[39]  Fei Li,et al.  Achieving single domain relaxor-PT crystals by high temperature poling , 2014 .

[40]  Qidai Chen,et al.  Protein-based soft micro-optics fabricated by femtosecond laser direct writing , 2014, Light: Science & Applications.

[41]  Yong‐Lai Zhang,et al.  Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. , 2013, Lab on a chip.

[42]  Huiying Hu,et al.  Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .

[43]  R. Eason,et al.  Light‐mediated ferroelectric domain engineering and micro‐structuring of lithium niobate crystals , 2012 .

[44]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[45]  Antonello Cutolo,et al.  Lab-on-fiber technology: toward multifunctional optical nanoprobes. , 2012, ACS nano.

[46]  Enge Wang,et al.  Domain Dynamics During Ferroelectric Switching , 2011, Science.

[47]  Ramamoorthy Ramesh,et al.  Efficient photovoltaic current generation at ferroelectric domain walls. , 2011, Physical review letters.

[48]  D. K. Kuznetsov,et al.  In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation , 2011 .

[49]  Qidai Chen,et al.  Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. , 2011, Optics letters.

[50]  K. Buse,et al.  Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser , 2011 .

[51]  Ady Arie,et al.  Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation. , 2010, Optics express.

[52]  M. Fontana,et al.  Raman visualization of micro- and nanoscale domain structures in lithium niobate , 2010 .

[53]  K. Koynov,et al.  Cerenkov-Type Second-Harmonic Generation in Two-Dimensional Nonlinear Photonic Structures , 2009, IEEE Journal of Quantum Electronics.

[54]  D. Neshev,et al.  Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media. , 2009, Optics express.

[55]  S. Benchabane,et al.  Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes , 2009 .

[56]  Ady Arie,et al.  Nonlinear generation and manipulation of Airy beams , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[57]  D. K. Kuznetsov,et al.  Formation of Nano-Scale Domain Structures in Lithium Niobate Using High-Intensity Laser Irradiation , 2008 .

[58]  A. Miyawaki,et al.  Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass , 2008, Biomedical microdevices.

[59]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[60]  R. Eason,et al.  Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser. , 2008, Optics express.

[61]  Shoji Maruo,et al.  Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. , 2008, Optics express.

[62]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[63]  O. Ersoy,et al.  Volume Fresnel zone plates fabricated by femtosecond laser direct writing , 2007 .

[64]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[65]  C. Eom,et al.  Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O(3) thin films. , 2006, Physical review letters.

[66]  Elisabeth Soergel,et al.  Visualization of ferroelectric domains in bulk single crystals , 2005 .

[67]  Karsten Buse,et al.  Ultraviolet light-assisted domain inversion in magnesium-doped lithium niobate crystals , 2005 .

[68]  J. Romero,et al.  Near infrared and visible tunability from a diode pumped Nd3+ activated strontium barium niobate laser crystal , 2005 .

[69]  V. Gopalan,et al.  Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination , 2005 .

[70]  Hiroshi Ishiwara,et al.  Current Status of Ferroelectric Random-Access Memory , 2004 .

[71]  Y. Rosenwaks,et al.  Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy , 2004 .

[72]  K. Betzler,et al.  Noncollinear optical frequency doubling in strontium barium niobate. , 2003, Physical review letters.

[73]  M. Fujimura,et al.  Fabrication of domain-inverted gratings in MgO:LiNbO/sub 3/ by applying voltage under ultraviolet irradiation through photomask at room temperature , 2003 .

[74]  Peter J. Smith,et al.  Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals , 2003 .

[75]  P. T. Brown,et al.  Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation , 2002 .

[76]  W. Brocklesby,et al.  Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations , 2002 .

[77]  J. Nishii,et al.  Femtosecond laser-assisted three-dimensional microfabrication in silica. , 2001, Optics letters.

[78]  Anthony Martinez,et al.  Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3 , 2000 .

[79]  Chen,et al.  Optical properties of an ionic-type phononic crystal , 1999, Science.

[80]  V. Berger,et al.  Nonlinear Photonic Crystals , 1998 .

[81]  E. Salje,et al.  LETTER TO THE EDITOR: Sheet superconductivity in twin walls: experimental evidence of ? , 1998 .

[82]  Nai-Ben Ming,et al.  Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice , 1997 .

[83]  Merlin,et al.  Reversal of ferroelectric domains by ultrashort optical pulses. , 1994, Physical review letters.

[84]  Hans M. Hertz,et al.  QUASIPHASE-MATCHED SECOND HARMONIC GENERATION OF BLUE LIGHT IN ELECTRICALLY PERIODICALLY-POLED LITHIUM TANTALATE WAVEGUIDES , 1991 .

[85]  Martin M. Fejer,et al.  Ferroelectric domain structures in LiNbO3 single-crystal fibers , 1986 .

[86]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[87]  P. Herman,et al.  Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels , 2012 .