A Generalized Numerical Procedure for Nonlinear Analysis of Frames Exhibiting a Limit or a Bifurcation Point

A generalized numerical scheme for nonlinear analysis of framed structures is presented. The proposed numerical technique is aimed at improving the reliability and efficiency of a computer program for nonlinear analysis of structures exhibiting a limit or a bifurcation point. A simple and automatic energy method for the transformation of a bifurcation point to a limit point for the tracing of the realistic post-buckling path is also suggested. The combined numerical strategy proposed in this paper and recommended for general non-linear problems will greatly enhance the feasibility and user-friendliness of a nonlinear analysis computer program for general users.

[1]  K. Bathe,et al.  ON THE AUTOMATIC SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS , 1983 .

[2]  Siu Lai Chan,et al.  Inelastic post-buckling analysis of tubular beam-columns and frames , 1989 .

[3]  Saafan A. Saafan Nonlinear Behavior of Structural Plane Frames , 1963 .

[4]  Aslam Kassimali,et al.  Large deformations of framed structures under static and dynamic loads , 1976 .

[5]  R. Wen,et al.  Nonlinear Elastic Frame Analysis by Finite Element , 1983 .

[6]  W. F. Chen,et al.  Analysis of tubular beam-columns and frames under reversed loading , 1987 .

[7]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[8]  J. L. Meek,et al.  Geometrically Non-linear Behaviour of Space Frame Structures , 1987 .

[9]  S. L. Chan,et al.  Geometric and material nonlinear analysis of structures comprising rectangular hollow sections , 1987 .

[10]  Thomas See,et al.  Large Displacement Elastic Buckling of Space Structures , 1986 .

[11]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[12]  Gouri Dhatt,et al.  Incremental displacement algorithms for nonlinear problems , 1979 .

[13]  Manolis Papadrakakis,et al.  Post-buckling analysis of spatial structures by vector iteration methods , 1981 .

[14]  Jerome J. Connor,et al.  Nonlinear Analysis of Elastic Framed Structures , 1968 .

[15]  Yeong-Bin Yang,et al.  Joint Rotation and Geometric Nonlinear Analysis , 1986 .

[16]  G. Powell,et al.  Improved iteration strategy for nonlinear structures , 1981 .

[17]  Ekkehard Ramm,et al.  Strategies for Tracing the Nonlinear Response Near Limit Points , 1981 .

[18]  Richard H. Gallagher,et al.  Finite element analysis of torsional and torsional–flexural stability problems , 1970 .

[19]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[20]  Sritawat Kitipornchai,et al.  Geometric nonlinear analysis of asymmetric thin-walled beam-columns , 1987 .

[21]  J. L. Meek,et al.  Geometrically nonlinear analysis of space frames by an incremental iterative technique , 1984 .

[22]  D. W. Scharpf,et al.  On large displacement-small strain analysis of structures with rotational degrees of freedom , 1978 .

[23]  Semih S. Tezcan,et al.  Tangent Stiffness Matrix for Space Frame Members , 1969 .

[24]  Siu-Lai Chan Geometric and material non‐linear analysis of beam‐columns and frames using the minimum residual displacement method , 1988 .

[25]  M. J. Clarke,et al.  A study of incremental-iterative strategies for non-linear analyses , 1990 .

[26]  Satya N. Atluri,et al.  A simplified finite element method for large deformation, post‐buckling analyses of large frame structures, using explicitly derived tangent stiffness matrices , 1986 .