Cavitation and cetacean

Bubbles are the most acoustically active naturally occurring entities in the ocean, and cetaceans are the most intelligent. Having evolved over tens of millions of years to cope with the underwater acoustic environment, cetaceans may have developed techniques from which we could learn. This paper outlines some of the possible interactions, ranging from the exploitation of acoustics in bubble nets to trap prey, to techniques for echolocating in bubbly water, to the possibility that man-made sonar signals could be responsible for bubble generation and death within cetaceans.

[1]  M. Loewen,et al.  Experiments investigating the use of fiber-optic probes for measuring bubble-size distributions , 1998 .

[2]  Timothy G. Leighton,et al.  The sounds of seas in space , 2005 .

[3]  C. Chin,et al.  Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  Timothy G. Leighton,et al.  Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Australia-Bermuda Sound Transmission Experiment (1960) Revisited , 1988 .

[6]  L. Dill,et al.  The behavior of Pacific herring schools in response to artificial humpback whale bubbles , 1997 .

[7]  Timothy G. Leighton,et al.  Autonomous spar-buoy measurements of bubble populations under breaking waves in the Sea of the Hebrides , 2007 .

[8]  Frank E. Fish,et al.  PERFORMANCE CONSTRAINTS ON THE MANEUVERABILITY OF FLEXIBLE AND RIGID BIOLOGICAL SYSTEMS. , 1999 .

[9]  S. Castelin,et al.  A notional scenario for the use of unmanned system groups in littoral warfare , 2004, 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578).

[10]  Whitlow W. L. Au,et al.  The Sonar of Dolphins , 1993, Springer New York.

[11]  Timothy G. Leighton,et al.  MARINE MAMMAL SIGNALS IN BUBBLY WATER , 2023, BIO SONAR SYSTEMS AND BIO ACOUSTICS 2004.

[12]  S H Ridgway,et al.  Dolphin lung collapse and intramuscular circulation during free diving: evidence from nitrogen washout. , 1979, Science.

[13]  B. Jähne,et al.  Laboratory and inshore measurements of bubble size distributions , 1997 .

[14]  R. W. Baird,et al.  Diving behaviour of Cuvier's (Ziphius cavirostris) and Blainville's (Mesoplodon densirostris) beaked whales in Hawai'i , 2006 .

[15]  Timothy G. Leighton,et al.  Trapped within a 'wall of sound': a possible mechanism for the bubble nets of the humpback whales , 2004 .

[16]  B. Møhl,et al.  Echolocation: high-frequency component in the click of the harbour porpoise (Phocoena ph. L.). , 1973, The Journal of the Acoustical Society of America.

[17]  T. Leighton The Acoustic Bubble , 1994 .

[18]  Timothy G. Leighton,et al.  The importance of bubble ring-up and pulse length in estimating the bubble distribution from propagation measurements , 2001 .

[19]  M. Arbelo,et al.  “Gas and Fat Embolic Syndrome” Involving a Mass Stranding of Beaked Whales (Family Ziphiidae) Exposed to Anthropogenic Sonar Signals , 2005, Veterinary pathology.

[20]  Nicholas C. Makris,et al.  Probing Europa's interior with natural sound sources , 2003 .

[21]  W. Au,et al.  Target detection in reverberation by an echolocating Atlantic bottlenose dolphin (Tursiops truncatus). , 1983, The Journal of the Acoustical Society of America.

[22]  M. D. Stokes,et al.  Air Entrainment Processes and Bubble Size Distributions in the Surf Zone , 1999 .

[23]  Timothy G. Leighton,et al.  Experimental and theoretical characterization of sonochemical cells. Part 1. Cylindrical reactors and their use to calculate the speed of sound in aqueous solutions , 2003 .

[24]  Timothy G. Leighton,et al.  The sound of Titan: a role for acoustics in space exploration , 2004 .

[25]  Timothy G. Leighton,et al.  An acoustical hypothesis for the spiral bubble nets of humpback whales and the implications for whale feeding , 2007 .

[26]  W. E. Evans,et al.  Adaptiveness and Ecology of Echolocation in Toothed Whales , 1980 .

[27]  Timothy G. Leighton,et al.  FROM SEA TO SURGERIES, FROM BABBLING BROOKS TO BABY SCANS: BUBBLE ACOUSTICS AT ISVR , 2023, Spring Conference Acoustics 2004.

[28]  T. Akamatsu,et al.  Echolocation signals of the free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientialis). , 2005, The Journal of the Acoustical Society of America.

[29]  P. Tyack,et al.  Extreme diving of beaked whales , 2006, Journal of Experimental Biology.

[30]  L A Crum,et al.  Acoustically enhanced bubble growth at low frequencies and its implications for human diver and marine mammal safety. , 1994, The Journal of the Acoustical Society of America.

[31]  Timothy G. Leighton,et al.  Sonar which penetrates bubble clouds , 2007 .

[32]  P. Jepson,et al.  Acute and Chronic Gas Bubble Lesions in Cetaceans Stranded in the United Kingdom , 2005, Veterinary pathology.

[33]  W. Kuperman,et al.  Spatial resolution of time-reversal arrays in shallow water , 2000 .

[34]  Timothy G. Leighton,et al.  The acoustics of gas bubbles in liquids , 2001 .

[35]  Timothy G. Leighton,et al.  The use of acoustics in space exploration , 2007 .

[36]  W. Au,et al.  High‐frequency harmonics and source level of humpback whale songs , 2001 .

[37]  M. Moore,et al.  Cumulative Sperm Whale Bone Damage and the Bends , 2004, Science.

[38]  A. Frantzis,et al.  Does acoustic testing strand whales? , 1998, Nature.

[39]  Timothy G. Leighton,et al.  Bubble acoustics in shallow water: Possible applications in nature , 2005 .

[40]  P. Burns,et al.  Pulse inversion imaging of liver blood flow: improved method for characterizing focal masses with microbubble contrast. , 2000, Investigative radiology.

[41]  Timothy G Leighton,et al.  What is ultrasound? , 2007, Progress in biophysics and molecular biology.

[42]  M. Arbelo,et al.  Gas-bubble lesions in stranded cetaceans , 2003, Nature.

[43]  T. Leighton Nonlinear bubble dynamics and the effects on propagation through near-surface bubble layers , 2005 .

[44]  P. White,et al.  Bubble acoustics: what can we learn from cetaceans about contrast enhancement? , 2005, IEEE Ultrasonics Symposium, 2005..

[45]  F. Pichler,et al.  Origin and radiation of Southern Hemisphere coastal dolphins (genus Cephalorhynchus) , 2001, Molecular ecology.

[46]  Whitlow W. L. Au,et al.  The echolocation ability of the beluga (Delphinapterus leucas) to detect targets in clutter , 1991 .

[47]  Whitlow W. L. Au,et al.  Target detection in noise by echolocating Atlantic bottlenose dolphins , 1981 .