On the global existence and wave-breaking criteria for the two-component Camassa-Holm system

Considered herein is a two-component Camassa–Holm system modeling shallow water waves moving over a linear shear flow. A wave-breaking criterion for strong solutions is determined in the lowest Sobolev space Hs, s>32 by using the localization analysis in the transport equation theory. Moreover, an improved result of global solutions with only a nonzero initial profile of the free surface component of the system is established in this Sobolev space Hs.

[1]  G. Falqui,et al.  On a Camassa-Holm type equation with two dependent variables , 2005, nlin/0505059.

[2]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[3]  J. C. Burns Long waves in running water , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  R. Danchin A note on well-posedness for Camassa-Holm equation , 2003 .

[5]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[6]  R. Danchin A few remarks on the Camassa-Holm equation , 2001, Differential and Integral Equations.

[7]  Z. Yin,et al.  Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system , 2010 .

[8]  H. Triebel Theory Of Function Spaces , 1983 .

[9]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[10]  Rossen I. Ivanov,et al.  Shallow Water Waves , 2019, Theoretical and Mathematical Physics.

[11]  Boris Kolev Poisson brackets in Hydrodynamics , 2007 .

[12]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[13]  A. Constantin,et al.  Geodesic flow on the diffeomorphism group of the circle , 2003 .

[14]  Adrian Constantin,et al.  Exact steady periodic water waves with vorticity , 2004 .

[15]  Youjin Zhang,et al.  A Two-component Generalization of the Camassa-Holm Equation and its Solutions , 2005, nlin/0501028.

[16]  R. S. Johnson,et al.  The Camassa–Holm equation for water waves moving over a shear flow , 2003 .

[17]  A. Constantin Existence of permanent and breaking waves for a shallow water equation: a geometric approach , 2000 .

[18]  J. Chemin Localization in Fourier space and Navier-Stokes system , 2005 .

[19]  P. Olver,et al.  Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  A. Bressan,et al.  Global Conservative Solutions of the Camassa–Holm Equation , 2007 .

[21]  Guilong Gui,et al.  On the Cauchy problem for the two-component Camassa–Holm system , 2011 .

[22]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[23]  Darryl D. Holm,et al.  Singular solutions of a modified two-component Camassa-Holm equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Thomas Kappeler,et al.  On geodesic exponential maps of the Virasoro group , 2007 .

[25]  Rossen I. Ivanov,et al.  On an integrable two-component Camassa–Holm shallow water system , 2008, 0806.0868.

[26]  Joachim Escher,et al.  Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation , 2007 .

[27]  R. Johnson On solutions of the burns condition (which determines the speed of propagation of linear long waves on a shear flow with or without a critical layer) , 1991 .

[28]  A. Bressan,et al.  GLOBAL DISSIPATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION , 2007 .

[29]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[30]  L. Alonso,et al.  On the Prolongation of a Hierarchy of Hydrodynamic Chains , 2004 .

[31]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .