Posynomial Parametric Geometric Programming with Interval Valued Coefficient

The article presents solution procedure of geometric programming with imprecise coefficients. We have considered problems with imprecise data as a form of an interval in nature. Many authors have solved the imprecise problem by geometric programming technique in a different way. In this paper, we introduce parametric functional form of an interval number and then solve the problem by geometric programming technique. The advantage of the present approach is that we get optimal solution of the objective function directly without solving equivalent transformed problems. Numerical examples are presented to support of the proposed approach.

[1]  Shiang-Tai Liu,et al.  Using geometric programming to profit maximization with interval coefficients and quantity discount , 2009, Appl. Math. Comput..

[2]  M. A. Hall,et al.  The analysis of an inventory control model using posynomial geometric programming , 1982 .

[3]  C. Scott,et al.  Allocation of resources in project management , 1995 .

[4]  G. S. Mahapatra,et al.  Reliability and cost analysis of series system models using fuzzy parametric geometric programming , 2010 .

[5]  T.C.E. Cheng,et al.  An Economic Order Quantity Model with Demand-Dependent Unit Production Cost and Imperfect Production Processes , 1991 .

[6]  Cerry M. Klein,et al.  Optimal inventory policies for an economic order quantity model with decreasing cost functions , 2005, Eur. J. Oper. Res..

[7]  Shiang-Tai Liu,et al.  Posynomial geometric programming with interval exponents and coefficients , 2008, Eur. J. Oper. Res..

[8]  P. N. Rao,et al.  Optimal selection of process parameters for turning operations in a CAPP system , 1997 .

[9]  Akshay K. Ojha,et al.  Geometric Programming Problem with Co-Efficients and Exponents Associated with Binary Numbers , 2010, ArXiv.

[10]  Pradip Mandal,et al.  CMOS op-amp sizing using a geometric programming formulation , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  J. Kyparisis Sensitivity analysis in geometric programming: Theory and computations , 1991 .

[12]  D. Bricker,et al.  Posynomial geometric programming as a special case of semi-infinite linear programming , 1990 .

[13]  Yinyu Ye,et al.  An infeasible interior-point algorithm for solving primal and dual geometric programs , 1997, Math. Program..

[14]  Jayant Rajgopal,et al.  Solving Posynomial Geometric Programming Problems via Generalized Linear Programming , 2002, Comput. Optim. Appl..

[15]  Mona F. El-Wakeel,et al.  Probabilistic multi-item inventory model with varying order cost under two restrictions: A geometric programming approach , 2003 .

[16]  Shiang-Tai Liu,et al.  Posynomial geometric programming with parametric uncertainty , 2006, Eur. J. Oper. Res..

[17]  J. C. Choi,et al.  Effectiveness of a geometric programming algorithm for optimization of machining economics models , 1996, Comput. Oper. Res..

[18]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Marietta J. Tretter,et al.  An Interval Arithmetic Approach to Sensitivity Analysis in Geometric Programming , 1987, Oper. Res..

[20]  K. K. Govil Geometric programming method for optimal reliability allocation for a series system subject to cost constraint , 1983 .

[21]  K. Kortanek,et al.  A second order affine scaling algorithm for the geometric programming dual with logarithmic barrier , 1992 .

[22]  K. O. Kortanek,et al.  Controlled dual perturbations for central path trajectories in geometric programming , 1994 .

[23]  Bing-yuan Cao,et al.  Fuzzy geometric programming and its application , 2010 .

[24]  Clarence Zener,et al.  Geometric Programming : Theory and Application , 1967 .

[25]  Shu-Cherng Fang,et al.  Controlled dual perturbations for posynomial programs , 1988 .

[26]  Martin D. F. Wong,et al.  VLSI Circuit Performance Optimization by Geometric Programming , 2001, Ann. Oper. Res..

[27]  R. A. Cuninghame-Green,et al.  Applied geometric programming , 1976 .

[28]  Jayant Rajgopal,et al.  An alternative approach to the refined duality theory of geometric programming , 1992 .

[29]  C. Floudas,et al.  Global Optimization in Generalized Geometric Programming , 1997, Encyclopedia of Optimization.

[30]  R. Duffin,et al.  Geometric programming with signomials , 1973 .

[31]  C. Bing-yuan Fuzzy Geometric Programming , 2002 .

[32]  Won J. Lee Determining Order Quantity and Selling Price by Geometric Programming: Optimal Solution, Bounds, and Sensitivity* , 1993 .

[33]  D. Bricker,et al.  Investigation of path-following algorithms for signomial geometric programming problems , 1997 .

[34]  Hsien-Chung Wu Duality Theory for Optimization Problems with Interval-Valued Objective Functions , 2010 .

[35]  Elmor L. Peterson,et al.  The Fundamental Relations between Geometric Programming Duality, Parametric Programming Duality, and Ordinary Lagrangian Duality , 2001, Ann. Oper. Res..

[36]  R. Dembo,et al.  Solution of Generalized Geometric Programs , 1975 .

[37]  K. K. Govil Optimal maintainability allocation using the geometric programming method , 1992 .

[38]  DaeSoo Kim,et al.  Optimal joint pricing and lot sizing with fixed and variable capacity , 1998, Eur. J. Oper. Res..