Low-power/high-speed scalable and subchannelizable FFT architecture for SOFDMA application

ABSTRACT In this paper, a scalable and subchannelizable innovative FFT architecture is proposed to provide with low-power and high-speed characteristics for SOFDMA application in IEEE 802.16 WiMAX communication and other fields that have features in SOFDMA applications. The scalability design uses multiplexing concept to build only one 1024-point and only one 2048-point FFT processors in an IEEE 802.16e and an IEEE 802.16-2004 WiMAX system respectively. The spirits of the subchannelization design are prohibited all of the unused arithmetic operations in the present inventive design to achieve low-power requirement when only a small subset of FFT outputs are of interests for a specific Subscriber Station in one session of a IEEE 802.16e or IEEE 802.16-2004 WiMAX systems. The SELDIF registry control methodology of the key control mechanism of the subchannelization design is also disclosed for the purposes of structure simplification and low-power/high-speed design in this paper. The performance on areas and power efficiency are analyzed based on MATLAB codes. A closed system platform is used to tune design parameters for chip implementation by using Agilent ADS tool.