Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT

Using the recently developed organic semiconductor, 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT), we have fabricated organic thin-film transistors and ring oscillators on flexible polymeric substrates. By utilizing a gate dielectric with a small thickness (5.3 nm) and a large capacitance (800 nF cm−2), the transistors can be operated with relatively low voltages of about 2 to 3 V. To improve the charge exchange between the organic semiconductor and the gold source and drain contacts, a thin layer of a non-alkylated organic semiconductor (DNTT) sandwiched between two thin layers of a strong organic dopant (NDP-9) was inserted between the C10-DNTT and the gold contacts. The optimized transistors have a field-effect mobility of 4.3 cm2 V−1 s−1, an on/off current ratio of 108, and a subthreshold swing of 68 mV per decade. The ring oscillators have a signal propagation delay of 5 μs per stage at a supply voltage of 3 V, making these the fastest organic circuits at supply voltages below 7 V reported to date.

[1]  Martin Heeney,et al.  Undoped polythiophene field-effect transistors with mobility of 1cm2V−1s−1 , 2007 .

[2]  H. Matsui,et al.  Inkjet printing of single-crystal films , 2011, Nature.

[3]  Wim Dehaene,et al.  Organic RFID transponder chip with data rate compatible with electronic product coding , 2010 .

[4]  Tobin J Marks,et al.  Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. , 2006, Journal of the American Chemical Society.

[5]  Gerwin H Gelinck,et al.  Inkjet Printing of TIPS‐PEN on Soluble Polymer Insulating Films: A Route to High‐Performance Thin‐Film Transistors , 2010, Advanced materials.

[6]  K. Takimiya,et al.  Molecular Ordering of High‐Performance Soluble Molecular Semiconductors and Re‐evaluation of Their Field‐Effect Transistor Characteristics , 2008 .

[7]  A. Chin,et al.  Low Subthreshold Swing HfLaO/Pentacene Organic Thin-Film Transistors , 2008, IEEE Electron Device Letters.

[8]  David G. Castner,et al.  Simultaneous Modification of Bottom‐Contact Electrode and Dielectric Surfaces for Organic Thin‐Film Transistors Through Single‐Component Spin‐Cast Monolayers , 2011 .

[9]  Sigurd Wagner,et al.  Tradeoff regimes of lifetime in amorphous silicon thin-film transistors and a universal lifetime comparison framework , 2009 .

[10]  Larry D. Boardman,et al.  High-Performance OTFTs Using Surface-Modified Alumina Dielectrics , 2003 .

[11]  Takao Someya,et al.  Contact doping and ultrathin gate dielectrics for nanoscale organic thin-film transistors. , 2011, Small.

[12]  C. M. Li,et al.  Solution-Processable Barium Titanate and Strontium Titanate Nanoparticle Dielectrics for Low-Voltage Organic Thin-Film Transistors , 2009 .

[13]  Shu-Hao Kuo,et al.  High-Mobility Pentacene-Based Thin-Film Transistors With a Solution-Processed Barium Titanate Insulator , 2011, IEEE Electron Device Letters.

[14]  Hiroki Mori,et al.  Alkylated Dinaphtho[2,3‐b:2′,3′‐f]Thieno[3,2‐b]Thiophenes (Cn‐DNTTs): Organic Semiconductors for High‐Performance Thin‐Film Transistors , 2011, Advanced materials.

[15]  Robert Graf,et al.  Ultrahigh mobility in polymer field-effect transistors by design. , 2011, Journal of the American Chemical Society.

[16]  D. Flandre,et al.  Low-power dihexylquaterthiophene-based thin film transistors for analog applications. , 2008 .

[17]  R. Muller,et al.  High mobility short-channel p-type organic transistors with reduced gold content and completely gold-free source/drain bottom contacts , 2011 .

[18]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[19]  P. Blom,et al.  Charge transport in high-performance ink-jet printed single-droplet organic transistors based on a silylethynyl substituted pentacene/insulating polymer blend , 2011 .

[20]  K. Takimiya,et al.  FET characteristics of dinaphthothienothiophene (DNTT) on Si/SiO2 substrates with various surface-modifications , 2007 .

[21]  Raoul Schroeder,et al.  Improving organic transistor performance with Schottky contacts , 2004 .

[22]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Chia-wen Chang,et al.  Tuning surface properties in photosensitive polyimide. Material design for high performance organic thin-film transistors , 2010 .

[24]  R. Ye,et al.  High Performance Pentacene Thin Film Transistors with a PVA Gate Dielectric , 2007 .

[25]  Wentao Xu,et al.  Organic field-effect transistors with cross-linked high-k cyanoethylated pullulan polymer as a gate insulator , 2010 .

[26]  Kazuo Takimiya,et al.  Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors , 2007 .

[27]  Itaru Osaka,et al.  Dianthra[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DATT): synthesis, characterization, and FET characteristics of new π-extended heteroarene with eight fused aromatic rings. , 2011, Journal of the American Chemical Society.

[28]  Pooi See Lee,et al.  Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors , 2008 .

[29]  Itaru Osaka,et al.  General synthesis of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) derivatives. , 2011, Organic letters.

[30]  Takao Someya,et al.  Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability , 2011 .

[31]  Sigurd Wagner,et al.  Highly stable amorphous-silicon thin-film transistors on clear plastic , 2008 .

[32]  Nripan Mathews,et al.  The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors , 2009 .

[33]  S. P. Tiwari,et al.  Pentacene organic field-effect transistors with doped electrode-semiconductor contacts , 2010 .

[34]  Mayumi Uno,et al.  Very High Mobility in Solution-Processed Organic Thin-Film Transistors of Highly Ordered [1]Benzothieno[3,2-b]benzothiophene Derivatives , 2009 .

[35]  Sui‐Dong Wang,et al.  Surface selective deposition of molecular semiconductors for solution-based integration of organic field-effect transistors , 2009 .

[36]  P. Blom,et al.  Ambipolar charge transport in organic field-effect transistors , 2006 .

[37]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[38]  Y. Nishi,et al.  Solution-processed flexible organic transistors showing very-low subthreshold slope with a bilayer polymeric dielectric on plastic , 2009 .

[39]  Kazuhito Tsukagoshi,et al.  Interface modification of a pentacene field-effect transistor with a submicron channel , 2006 .

[40]  Bernard Kippelen,et al.  Low-voltage flexible organic complementary inverters with high noise margin and high dc gain , 2009 .

[41]  Kazuhito Tsukagoshi,et al.  Improvement of subthreshold current transport by contact interface modification in p-type organic field-effect transistors , 2009 .

[42]  Se Hyun Kim,et al.  Physicochemically Stable Polymer‐Coupled Oxide Dielectrics for Multipurpose Organic Electronic Applications , 2011 .

[43]  Takao Someya,et al.  Flexible Low‐Voltage Organic Transistors and Circuits Based on a High‐Mobility Organic Semiconductor with Good Air Stability , 2010, Advanced materials.

[44]  Jun Li,et al.  Improving organic transistor performance through contact-area-limited doping , 2009 .

[45]  Bo Zhang,et al.  Materials for Printable, Transparent, and Low‐Voltage Transistors , 2011 .

[46]  A. Jen,et al.  Low-voltage organic thin-film transistors with π-σ-phosphonic acid molecular dielectric monolayers , 2008 .

[47]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[48]  B. Cho,et al.  Low-Voltage High-Performance Pentacene Thin-Film Transistors With Ultrathin PVP/High- $\kappa$ HfLaO Hybrid Gate Dielectric , 2010, IEEE Electron Device Letters.

[49]  S. Rhee,et al.  Compromise of electrical leakage and capacitance density effects: a facile route for high mobility and sharp subthreshold slope in low-voltage operable organic field-effect transistors , 2011 .

[50]  High performance organic thin-film transistors based on hexamethylenetetrathiafulvalene lying flat-on-surface with non-layered packing motif , 2010 .

[51]  C. M. Li,et al.  Solution-prepared hybrid-nanoparticle dielectrics for high-performance low-voltage organic thin-film transistors. , 2009, ACS applied materials & interfaces.

[52]  Lei Zhang,et al.  Morphology Optimization for the Fabrication of High Mobility Thin‐Film Transistors , 2011, Advanced materials.

[53]  Jiro Kasahara,et al.  A flexible full‐color AMOLED display driven by OTFTs , 2008 .

[54]  D. Bradley,et al.  The Influence of Film Morphology in High‐Mobility Small‐Molecule:Polymer Blend Organic Transistors , 2010 .

[55]  Wentao Xu,et al.  Low-operating voltage organic field-effect transistors with high-k cross-linked cyanoethylated pullulan polymer gate dielectrics , 2009 .