Cholera Modeling: Challenges to Quantitative Analysis and Predicting the Impact of Interventions

Several mathematical models of epidemic cholera have recently been proposed in response to outbreaks in Zimbabwe and Haiti. These models aim to estimate the dynamics of cholera transmission and the impact of possible interventions, with a goal of providing guidance to policy makers in deciding among alternative courses of action, including vaccination, provision of clean water, and antibiotics. Here, we discuss concerns about model misspecification, parameter uncertainty, and spatial heterogeneity intrinsic to models for cholera. We argue for caution in interpreting quantitative predictions, particularly predictions of the effectiveness of interventions. We specify sensitivity analyses that would be necessary to improve confidence in model-based quantitative prediction, and suggest types of monitoring in future epidemic settings that would improve analysis and prediction.

[1]  K. Koelle The impact of climate on the disease dynamics of cholera. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[2]  J. Fesselet,et al.  Descriptive spatial analysis of the cholera epidemic 2008-2009 in Harare, Zimbabwe: a secondary data analysis. , 2011, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[3]  D. Earn,et al.  Multiple Transmission Pathways and Disease Dynamics in a Waterborne Pathogen Model , 2010, Bulletin of mathematical biology.

[4]  David L. Smith,et al.  A quantitative analysis of transmission efficiency versus intensity for malaria , 2010, Nature communications.

[5]  M. Halloran,et al.  Design and interpretation of vaccine field studies. , 1999, Epidemiologic reviews.

[6]  David L. Smith,et al.  Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe , 2011, Proceedings of the National Academy of Sciences.

[7]  R. Grais,et al.  The Case for Reactive Mass Oral Cholera Vaccinations , 2011, PLoS neglected tropical diseases.

[8]  M. Gomes,et al.  On the Final Size of Epidemics with Seasonality , 2009, Bulletin of mathematical biology.

[9]  David M. Hartley,et al.  Hyperinfectivity: A Critical Element in the Ability of V. cholerae to Cause Epidemics? , 2005, PLoS medicine.

[10]  T P Pesigan,et al.  Applied studies on the viability of El Tor vibrios. , 1967, Bulletin of the World Health Organization.

[11]  D. Henderson,et al.  Cholera Dynamics and El Niño – Southern Oscillation , 2010 .

[12]  C. Fraser,et al.  Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: Impact of Public Health Interventions , 2003, Science.

[13]  C. Dye,et al.  Heterogeneities in the transmission of infectious agents: implications for the design of control programs. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Ferguson,et al.  Time lines of infection and disease in human influenza: a review of volunteer challenge studies. , 2008, American journal of epidemiology.

[15]  Susan M. Butler,et al.  Host-induced epidemic spread of the cholera bacterium , 2002, Nature.

[16]  M. Pascual,et al.  Refractory periods and climate forcing in cholera dynamics , 2005, Nature.

[17]  G. Box Science and Statistics , 1976 .

[18]  F. Luquero,et al.  Cholera Epidemic in Guinea-Bissau (2008): The Importance of “Place” , 2011, PloS one.

[19]  J. Wallinga,et al.  Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures , 2004, American journal of epidemiology.

[20]  R. Colwell,et al.  Environmental Reservoir of Vibrio cholerae The Causative Agent of Cholera a , 1994, Annals of the New York Academy of Sciences.

[21]  C. Macken,et al.  Modeling targeted layered containment of an influenza pandemic in the United States , 2008, Proceedings of the National Academy of Sciences.

[22]  David A. Sack,et al.  Self-limiting nature of seasonal cholera epidemics: Role of host-mediated amplification of phage , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Pascual,et al.  Inapparent infections and cholera dynamics , 2008, Nature.

[24]  A. Rinaldo,et al.  Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak , 2011 .

[25]  Sally M. Blower,et al.  Imperfect vaccines and herd immunity to HIV , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  J. Yorke,et al.  Dynamics and Control of the Transmission of Gonorrhea , 1978, Sexually transmitted diseases.

[27]  R. Brookmeyer,et al.  Incubation periods of acute respiratory viral infections: a systematic review , 2009, The Lancet Infectious Diseases.

[28]  J. Clemens,et al.  Vaccines in the time of cholera , 2011, Proceedings of the National Academy of Sciences.

[29]  D. Watts,et al.  Multiscale, resurgent epidemics in a hierarchical metapopulation model. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. Lyons,et al.  Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings , 2009, Science.

[31]  C. Codeço Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir , 2001, BMC infectious diseases.

[32]  J. P. Morgan The Cholera Years: The United States in 1832, 1849 and 1866 , 1988 .

[33]  Mohammad Yunus,et al.  Controlling Endemic Cholera with Oral Vaccines , 2007, PLoS medicine.

[34]  J. Rose,et al.  Quantitative Microbial Risk Assessment , 1999 .

[35]  P. E. Kopp,et al.  Superspreading and the effect of individual variation on disease emergence , 2005, Nature.

[36]  J. Robins,et al.  Transmissibility of 1918 pandemic influenza , 2004, Nature.

[37]  M. Gatto,et al.  On spatially explicit models of cholera epidemics , 2010, Journal of The Royal Society Interface.

[38]  R. Brookmeyer,et al.  H1N1pdm in the Americas. , 2010, Epidemics.

[39]  S. Basu,et al.  Transmission dynamics and control of cholera in Haiti: an epidemic model , 2011, The Lancet.

[40]  Mercedes Pascual,et al.  Serotype cycles in cholera dynamics , 2006, Proceedings of the Royal Society B: Biological Sciences.

[41]  C. Macken,et al.  Mitigation strategies for pandemic influenza in the United States. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J Wallinga,et al.  Reproductive numbers, epidemic spread and control in a community of households. , 2009, Mathematical biosciences.

[43]  M. Pagano,et al.  Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA , 2009, Influenza and other respiratory viruses.

[44]  D. Earn,et al.  Cholera Epidemic in Haiti, 2010: Using a Transmission Model to Explain Spatial Spread of Disease and Identify Optimal Control Interventions , 2011, Annals of Internal Medicine.

[45]  M. Lipsitch,et al.  How generation intervals shape the relationship between growth rates and reproductive numbers , 2007, Proceedings of the Royal Society B: Biological Sciences.

[46]  D. Cummings,et al.  Strategies for mitigating an influenza pandemic , 2006, Nature.

[47]  C G Pandit,et al.  Survival of Vibrio cholerae biotype El Tor in well water. , 1967, Bulletin of the World Health Organization.

[48]  D. Cummings,et al.  Strategies for containing an emerging influenza pandemic in Southeast Asia , 2005, Nature.

[49]  J. Robins,et al.  Transmission Dynamics and Control of Severe Acute Respiratory Syndrome , 2003, Science.

[50]  A. Maritan,et al.  On the space‐time evolution of a cholera epidemic , 2008 .

[51]  Hao Wang,et al.  Dynamics of Indirectly Transmitted Infectious Diseases with Immunological Threshold , 2009, Bulletin of mathematical biology.

[52]  K. D. Greene,et al.  Waterborne transmission of epidemic cholera in Trujillo, Peru: lessons for a continent at risk , 1992, The Lancet.

[53]  M. Jit,et al.  Vaccination against pandemic influenza A/H1N1v in England: a real-time economic evaluation. , 2010, Vaccine.

[54]  M. Halloran,et al.  Vaccination strategies for epidemic cholera in Haiti with implications for the developing world , 2011, Proceedings of the National Academy of Sciences.

[55]  J. Glenn Morris,et al.  Cholera transmission: the host, pathogen and bacteriophage dynamic , 2009, Nature Reviews Microbiology.

[56]  B. Levin,et al.  Modeling the role of bacteriophage in the control of cholera outbreaks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Gail E. Potter,et al.  The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus , 2009, Science.

[58]  T E Woodward,et al.  The Broad Street pump revisited: response of volunteers to ingested cholera vibrios. , 1971, Bulletin of the New York Academy of Medicine.