Is the Free-Energy Principle a Formal Theory of Semantics? From Variational Density Dynamics to Neural and Phenotypic Representations

The aim of this paper is twofold: (1) to assess whether the construct of neural representations plays an explanatory role under the variational free-energy principle and its corollary process theory, active inference; and (2) if so, to assess which philosophical stance—in relation to the ontological and epistemological status of representations—is most appropriate. We focus on non-realist (deflationary and fictionalist-instrumentalist) approaches. We consider a deflationary account of mental representation, according to which the explanatorily relevant contents of neural representations are mathematical, rather than cognitive, and a fictionalist or instrumentalist account, according to which representations are scientifically useful fictions that serve explanatory (and other) aims. After reviewing the free-energy principle and active inference, we argue that the model of adaptive phenotypes under the free-energy principle can be used to furnish a formal semantics, enabling us to assign semantic content to specific phenotypic states (the internal states of a Markovian system that exists far from equilibrium). We propose a modified fictionalist account—an organism-centered fictionalism or instrumentalism. We argue that, under the free-energy principle, pursuing even a deflationary account of the content of neural representations licenses the appeal to the kind of semantic content involved in the ‘aboutness’ or intentionality of cognitive systems; our position is thus coherent with, but rests on distinct assumptions from, the realist position. We argue that the free-energy principle thereby explains the aboutness or intentionality in living systems and hence their capacity to parse their sensory stream using an ontology or set of semantic factors.

[1]  Manuel Baltieri,et al.  Embodied skillful performance: where the action is , 2021, Synthese.

[2]  Fiora Salis,et al.  The New Fiction View of Models , 2020, The British Journal for the Philosophy of Science.

[3]  Adeel Razi,et al.  Parcels and particles: Markov blankets in the brain , 2020, Network Neuroscience.

[4]  K. Friston,et al.  Narrative as active inference , 2020 .

[5]  Karl J. Friston,et al.  Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems. , 2020, Physics of life reviews.

[6]  M. Levin,et al.  Scale‐Free Biology: Integrating Evolutionary and Developmental Thinking , 2020, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  Karl J. Friston,et al.  Markov blankets in the brain , 2020, Neuroscience & Biobehavioral Reviews.

[8]  Thomas van Es,et al.  Living models or life modelled? On the use of models in the free energy principle , 2020, Adapt. Behav..

[9]  Alex B. Kiefer Psychophysical identity and free energy , 2020, Journal of the Royal Society Interface.

[10]  Karl J. Friston,et al.  Sentience and the Origins of Consciousness: From Cartesian Duality to Markovian Monism , 2020, Entropy.

[11]  Jakob Hohwy,et al.  Self-supervision, normativity and the free energy principle , 2020, Synthese.

[12]  Stacie Friend,et al.  The Fictional Character of Scientific Models , 2020 .

[13]  Karl J. Friston,et al.  Markov blankets, information geometry and stochastic thermodynamics , 2019, Philosophical Transactions of the Royal Society A.

[14]  Lawrence K. Cormack,et al.  Binocular viewing geometry shapes the neural representation of the dynamic three-dimensional environment , 2019, Nature Neuroscience.

[15]  Karl J. Friston,et al.  Variational ecology and the physics of sentient systems , 2019, Physics of life reviews.

[16]  Michael D. Kirchhoff,et al.  The Predictive Brain: A Modular View of Brain and Cognitive Function? , 2019 .

[17]  Nima Mesgarani,et al.  Hierarchical Encoding of Attended Auditory Objects in Multi-talker Speech Perception , 2019, Neuron.

[18]  María Ruz,et al.  Neural representation of current and intended task sets during sequential judgements on human faces , 2019, NeuroImage.

[19]  Karl J. Friston,et al.  A tale of two densities: active inference is enactive inference , 2019, Adapt. Behav..

[20]  A. Potochnik True Enough , 2019, The Philosophical Review.

[21]  Karl J. Friston A free energy principle for a particular physics , 2019, 1906.10184.

[22]  Karl J. Friston,et al.  Representation Wars: Enacting an Armistice Through Active Inference , 2019, Frontiers in Psychology.

[23]  Karl J. Friston,et al.  Choosing a Markov blanket , 2019, Behavioral and Brain Sciences.

[24]  Mikio Akagi,et al.  Beyond Concepts: Unicepts, Language, and Natural Information , 2019, The Philosophical Quarterly.

[25]  Nicholas Shea,et al.  Representation in Cognitive Science , 2018, Oxford Scholarship Online.

[26]  S. Gallagher,et al.  The Oxford Handbook of 4E Cognition , 2018 .

[27]  Mark Sprevak,et al.  The Routledge Handbook of the Computational Mind , 2018 .

[28]  Frances Egan,et al.  The nature and function of content in computational models , 2018, The Routledge Handbook of the Computational Mind.

[29]  D. Weiskopf Reductive explanation between psychology and neuroscience , 2018, The Routledge Handbook of the Computational Mind.

[30]  Mark Sprevak,et al.  Triviality arguments about computational implementation , 2018, The Routledge Handbook of the Computational Mind.

[31]  Eun-Jin Kim,et al.  Investigating Information Geometry in Classical and Quantum Systems through Information Length , 2018, Entropy.

[32]  J. Anders,et al.  Coherent fluctuation relations: from the abstract to the concrete , 2018, Quantum.

[33]  J. Hohwy,et al.  Content and misrepresentation in hierarchical generative models , 2018, Synthese.

[34]  Ian Robertson,et al.  Enactivism and predictive processing: a non-representational view , 2018 .

[35]  Lincoln J. Colling,et al.  From symbols to icons: the return of resemblance in the cognitive neuroscience revolution , 2018, Synthese.

[36]  R. Caldwell The Language Animal , 2018 .

[37]  Frances Egan,et al.  Function-Theoretic Explanation and the Search for Neural Mechanisms , 2018 .

[38]  Maxwell J. D. Ramstead,et al.  Embodiment and Enactment in Cultural Psychiatry , 2018 .

[39]  Daniel Williams Pragmatism and the predictive mind , 2018 .

[40]  Laurence J. Kirmayer Ontologies of life: From thermodynamics to teleonomics: Comment on "Answering Schrödinger's question: A free-energy formulation" by Maxwell James Désormeau Ramstead et al. , 2017, Physics of life reviews.

[41]  Anastasia Kiyonaga,et al.  Neural Representation of Working Memory Content Is Modulated by Visual Attentional Demand , 2017, Journal of Cognitive Neuroscience.

[42]  Wanja Wiese,et al.  What are the contents of representations in predictive processing? , 2017 .

[43]  Romain Brette,et al.  Is coding a relevant metaphor for the brain? , 2017, bioRxiv.

[44]  N. Shea,et al.  Content in Simple Signalling Systems , 2017, The British Journal for the Philosophy of Science.

[45]  Karl J. Friston,et al.  Predicting green: really radical (plant) predictive processing , 2017, Journal of The Royal Society Interface.

[46]  Simon McGregor,et al.  The free energy principle for action and perception: A mathematical review , 2017, 1705.09156.

[47]  Daniel D. Hutto,et al.  Evolving Enactivism: Basic Minds Meet Content , 2017 .

[48]  M. Nour Surfing Uncertainty: Prediction, Action, and the Embodied Mind. , 2017, British Journal of Psychiatry.

[49]  Simon McGregor,et al.  The Bayesian stance: Equations for ‘as-if’ sensorimotor agency , 2017, Adapt. Behav..

[50]  Alex Kiefer,et al.  Literal Perceptual Inference , 2017 .

[51]  B. Loewer A Guide to Naturalizing Semantics , 2017 .

[52]  Karl J. Friston,et al.  Answering Schrödinger's question: A free-energy formulation , 2017, Physics of life reviews.

[53]  M. Miłkowski,et al.  Structural representations: causally relevant and different from detectors , 2017, Biology & philosophy.

[54]  R. Bogacz A tutorial on the free-energy framework for modelling perception and learning , 2017, Journal of mathematical psychology.

[55]  James Nguyen,et al.  Scientific Representation is Representation-As , 2017 .

[56]  Karl J. Friston,et al.  From cognitivism to autopoiesis: towards a computational framework for the embodied mind , 2016, Synthese.

[57]  Christoph Baumberger,et al.  Explaining Understanding : New Perspectives from Epistemology and Philosophy of Science , 2016 .

[58]  M. Ramstead,et al.  Cultural Affordances: Scaffolding Local Worlds Through Shared Intentionality and Regimes of Attention , 2016, Front. Psychol..

[59]  J. Hohwy The self-evidencing brain , 2016 .

[60]  G. Piccinini,et al.  The cognitive neuroscience revolution , 2016, Synthese.

[61]  Karl J. Friston,et al.  The pragmatic turn : toward action-oriented views in cognitive science , 2016 .

[62]  Pawel Gladziejewski,et al.  Predictive coding and representationalism , 2016, Synthese.

[63]  Daniel D. Hutto,et al.  The Natural Origins of Content , 2015 .

[64]  Collin Rice Moving Beyond Causes: Optimality Models and Scientific Explanation , 2015 .

[65]  Gualtiero Piccinini,et al.  Physical computation : a mechanistic account , 2015 .

[66]  Nihat Ay,et al.  Information Geometry on Complexity and Stochastic Interaction , 2015, Entropy.

[67]  A. Caticha The basics of information geometry , 2014, 1412.5633.

[68]  J. Hohwy The Predictive Mind , 2013 .

[69]  Alistair Isaac,et al.  Modeling without representation , 2013, Synthese.

[70]  Mark Sprevak,et al.  Fictionalism About Neural Representations , 2013 .

[71]  Eduardo O. Kohn,et al.  How Forests Think: Toward an Anthropology Beyond the Human , 2013 .

[72]  Marcin Miłkowski,et al.  Explaining the Computational Mind , 2013 .

[73]  Daniel D. Hutto,et al.  Radicalizing Enactivism: Basic Minds without Content , 2012 .

[74]  Daniel D. Hutto Folk Psychological Narratives: The Sociocultural Basis of Understanding Reasons , 2012 .

[75]  G. Graham,et al.  Phenomenal intentionality and content determinacy , 2012 .

[76]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[77]  Karl J. Friston,et al.  Free Energy, Value, and Attractors , 2011, Comput. Math. Methods Medicine.

[78]  Karl J. Friston What Is Optimal about Motor Control? , 2011, Neuron.

[79]  I. Peschard Making sense of modeling: beyond representation , 2011 .

[80]  Daniel D. Hutto Representation Reconsidered , 2011 .

[81]  C.J.H. Mann,et al.  The Cybernetic Brain: Sketches of Another Future , 2010 .

[82]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[83]  S. Schweber Science Without Laws , 2009, Perspectives in biology and medicine.

[84]  Murray G. Murphey,et al.  Truth and history , 2008 .

[85]  P. Ao Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics , 2008, Communications in theoretical physics.

[86]  Justin Dauwels,et al.  On Variational Message Passing on Factor Graphs , 2007, 2007 IEEE International Symposium on Information Theory.

[87]  Gavin E Crooks,et al.  Measuring thermodynamic length. , 2007, Physical review letters.

[88]  T. Tomé Entropy production in nonequilibrium systems described by a Fokker-Planck equation , 2006 .

[89]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[90]  W. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[91]  Marina Basu The Embodied Mind: Cognitive Science and Human Experience , 2004 .

[92]  Joel Davis Brain and Visual Perception: The Story of a 25-Year Collaboration , 2004 .

[93]  T. Frank Nonlinear Fokker-Planck Equations: Fundamentals and Applications , 2004 .

[94]  P J Beek,et al.  Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  R. Beer Dynamical approaches to cognitive science , 2000, Trends in Cognitive Sciences.

[96]  A. Grafstein MIT Encyclopedia of the Cognitive Sciences , 2000 .

[97]  W. C. Kerr,et al.  Generalized phase space version of Langevin equations and associated Fokker-Planck equations , 2000 .

[98]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[99]  H. Crauel,et al.  Attractors for random dynamical systems , 1994 .

[100]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[101]  Gerard Casey Minds and machines , 1992 .

[102]  Eric H. Anderson,et al.  Development of an active truss element for control of precision structures , 1990 .

[103]  Kevin L. Cope,et al.  The Soft Machine: Cybernetic Fiction , 1990 .

[104]  S. Brison The Intentional Stance , 1989 .

[105]  J. Fodor,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[106]  Peter H. Salus,et al.  Language, Thought, and Other Biological Categories: New Foundations for Realism , 1987 .

[107]  John Baker Wittgenstein on Rules and Private Language: An Elementary Exposition , 1984 .

[108]  R. Kapp SPACE* , 1959, The British Journal for the Philosophy of Science.

[109]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[110]  L. Bertalanffy AN OUTLINE OF GENERAL SYSTEM THEORY , 1950, The British Journal for the Philosophy of Science.

[111]  Neil Andrews Misrepresentation , 1943 .

[112]  Jakob Hohwy,et al.  Representation in the Prediction Error Minimization Framework , 2019, The Routledge Companion to Philosophy of Psychology.

[113]  Joshua Oon Soo Goh,et al.  A conceptual consideration of the free energy principle in cognitive maps: How cognitive maps help reduce surprise , 2018 .

[114]  Michael L. Anderson Of Bayes and bullets: An embodied, situated, targeting-based account of predictive processing , 2017 .

[115]  William Ramsey,et al.  Untangling two questions about mental representation , 2016 .

[116]  Anne Kuefer,et al.  Explaining Science A Cognitive Approach , 2016 .

[117]  Mandy Eberhart,et al.  The Scientific Image , 2016 .

[118]  Stefan Gottschalk,et al.  Belief Form Content And Function , 2016 .

[119]  Doreen Eichel,et al.  Reason Truth And History , 2016 .

[120]  D. McDermott LANGUAGE OF THOUGHT , 2012 .

[121]  F. Macpherson Cognitive Penetration of Colour Experience: Rethinking the Issue in Light of an Indirect Mechanism , 2012 .

[122]  Karl J. Friston A Free Energy Principle for Biological Systems , 2012, Entropy.

[123]  Karl J. Friston Embodied Inference : or “ I think therefore I am , if I am what I think ” , 2010 .

[124]  T. Schlicht Folk Psychological Narratives. The Sociocultural Basis of Understanding Reasons , 2010 .

[125]  J. Waller,et al.  Mind in Life: Biology, Phenomenology, and the Sciences of Mind , 2009 .

[126]  P. Hippe,et al.  Optimal Control and Estimation , 2009 .

[127]  J. Fodor Lot 2: The Language of Thought Revisited , 2008 .

[128]  Liliana Albertazzi,et al.  Psychology from an empirical standpoint , 2006 .

[129]  Alva Noë,et al.  Action in Perception , 2006, Representation and Mind.

[130]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[131]  G. O'Brien,et al.  Notes toward a structuralist theory of mental representation , 2004 .

[132]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[133]  Tracy Brown,et al.  The Embodied Mind: Cognitive Science and Human Experience , 2002, Cybern. Hum. Knowing.

[134]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[135]  C. Bishop The MIT Encyclopedia of the Cognitive Sciences , 1999 .

[136]  Ken Sekimoto,et al.  Langevin Equation and Thermodynamics , 1998 .

[137]  B. Hale,et al.  A Companion to the Philosophy of Language , 1997 .

[138]  David J. Chalmers,et al.  Connectionism and compositionality: Why Fodor and Pylyshyn were wrong , 1993 .

[139]  J. Gregory,et al.  Constrained optimization in the calculus of variations and optimal control theory , 1992 .

[140]  John Haugeland THE INTENTIONALITY ALL-STARS , 1990 .

[141]  D. Dennett The Intentional Stance. , 1987 .

[142]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[143]  D. S. Jones,et al.  Elementary information theory , 1979 .

[144]  Michael Polanyi The British Journal for the Philosophy of Science , 1964, Nature.

[145]  Myron Tribus,et al.  Thermostatics and thermodynamics : an introduction to energy, information and states of matter, with engineering applications , 1961 .

[146]  B. P. Bowne Action and interaction. , 1882 .

[147]  T. Vogels,et al.  Neuroscience and Biobehavioral Reviews Neural mechanisms of attending to items in working memory , 2022 .