An in-depth review of La-Fe-Si magnetocaloric composites: structure design and performance enhancement

[1]  Lingwei Li,et al.  Electronic structure, magnetic properties and magnetocaloric performance in rare earths (RE) based RE2BaZnO5 (RE = Gd, Dy, Ho, and Er) compounds , 2022, Acta Materialia.

[2]  M. Risser,et al.  “Two-steps” process in the first-order transformation of giant magnetocaloric materials , 2022, Acta Materialia.

[3]  Hu Zhang,et al.  Low-melting metal bonded MM′X/In composite with largely enhanced mechanical property and anisotropic negative thermal expansion , 2022, Acta Materialia.

[4]  R. Ramanujan,et al.  One-Step Sintering Process for the Production of Magnetocaloric La(Fe,Si)13-Based Composites , 2022, Metals.

[5]  Jiang Wang,et al.  Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide , 2022, Acta Materialia.

[6]  I. Takeuchi,et al.  Materials, physics and systems for multicaloric cooling , 2021, Nature Reviews Materials.

[7]  N. van Dijk,et al.  Enhanced reversibility of the magnetoelastic transition in (Mn,Fe)2(P,Si) alloys via minimizing the transition-induced elastic strain energy , 2022, Journal of Materials Science & Technology.

[8]  Jiang Wang,et al.  Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy , 2021, Journal of Materials Science & Technology.

[9]  Lingwei Li,et al.  Microstructure, magnetic properties and enhanced thermal conductivity in La(Fe,Co,Si)13/Nb magnetocaloric composites , 2021 .

[10]  Lingwei Li,et al.  Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds , 2021 .

[11]  R. Ramanujan,et al.  Microstructural evolution, magnetocaloric effect, mechanical and thermal properties of hot-pressed LaFe11.6Si1.4/Ce2Co7 composites prepared using strip-cast master alloy flakes , 2020 .

[12]  N. van Dijk,et al.  Switching the magnetostructural coupling in MnCoGe-based magnetocaloric materials , 2020, Physical Review Materials.

[13]  Jian Liu,et al.  Impact of interface structure on functionality in hot-pressed La-Fe-Si/Fe magnetocaloric composites , 2020 .

[14]  Y. Ouyang,et al.  LaFe11Co0.8Si1.2/Al magnetocaloric composites prepared by hot pressing , 2020 .

[15]  R. Ramanujan,et al.  Microstructure, phase evolution and magnetocaloric properties of LaFe11.6Si1.4/La70Co30 composite , 2020 .

[16]  M. Yan,et al.  Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration , 2020 .

[17]  Wen Wang,et al.  Plastically deformed La–Fe–Si: Microstructural evolution, magnetocaloric effect and anisotropic thermal conductivity , 2020 .

[18]  Y. Ouyang,et al.  Simultaneous achievement of enhanced thermal conductivity and large magnetic entropy change in La-Fe-Si-H/Sn composites by optimizing interface contacts and hot pressing parameters , 2019, Journal of Alloys and Compounds.

[19]  Yikun Zhang Review of the structural, magnetic and magnetocaloric properties in ternary rare earth RE2T2X type intermetallic compounds , 2019, Journal of Alloys and Compounds.

[20]  N. Sun,et al.  Microstructure, magnetic properties and thermal conductivity of LaFe11.2Si1.8/Ta magnetocaloric composites , 2019, Journal of Magnetism and Magnetic Materials.

[21]  R. Ramanujan,et al.  Improvement in the magnetocaloric properties of sintered La(Fe,Si)13 based composites processed by La-Co grain boundary diffusion , 2019, Journal of Alloys and Compounds.

[22]  F. Hu,et al.  Mechanical and magnetocaloric properties of La(Fe,Mn,Si)13Hδ/Cu plates prepared by Cu-binding prior to hydrogenation , 2019, Intermetallics.

[23]  N. Sun,et al.  Excellent mechanical and magnetocaloric performances in Pb-Bi-Cd alloy bonded LaFe11.6Si1.4H1.4 composite materials , 2019, Materialia.

[24]  A. Waske,et al.  A Magnetocaloric Booster Unit for Energy-Efficient Air-Conditioning , 2019, Crystals.

[25]  O. Gutfleisch,et al.  Millisecond Dynamics of the Magnetocaloric Effect in a First- and Second-Order Phase Transition Material , 2018, Energy Technology.

[26]  R. Gaisin,et al.  Anisotropy of the Thermal Expansion of a Polycrystalline Ni–Mn–Ga Alloy Subjected to Plastic Deformation by Forging , 2018 .

[27]  Jianlin Yu,et al.  Variable load control strategy for room-temperature magnetocaloric cooling applications , 2018, Energy.

[28]  N. Sun,et al.  Study of the Microstructure, Mechanical, and Magnetic Properties of LaFe11.6Si1.4Hy/Bi Magnetocaloric Composites , 2018, Materials.

[29]  R. Ramanujan,et al.  Magnetocaloric Properties of Low-Cost Fe and Sn Substituted MnNiSi-Based Alloys Exhibiting a Magnetostructural Transition Near Room Temperature , 2018, IEEE Transactions on Magnetics.

[30]  Jian Liu,et al.  Outstanding Comprehensive Performance of La(Fe, Si)13Hy/In Composite with Durable Service Life for Magnetic Refrigeration , 2018 .

[31]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[32]  N. Tian,et al.  Simultaneous plate forming and hydriding of La(Fe, Si)13 magnetocaloric powders , 2018 .

[33]  R. Ramanujan,et al.  La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn42Bi58 magnetocaloric composites prepared by low temperature hot pressing , 2018 .

[34]  J. Borrego,et al.  Grinding and particle size selection as a procedure to enhance the magnetocaloric response of La(Fe,Si)13 bulk samples , 2017 .

[35]  O. Gutfleisch,et al.  Production and properties of metal-bonded La(Fe,Mn,Si)13Hx composite material , 2017 .

[36]  Ke Li,et al.  Operational test of bonded magnetocaloric plates , 2017 .

[37]  Arie Y. Lewin,et al.  Enabling Open Innovation: Lessons from Haier , 2017 .

[38]  O. Gutfleisch,et al.  High-performance solid-state cooling materials: Balancing magnetocaloric and non-magnetic properties in dual phase La-Fe-Si , 2017 .

[39]  A. Rack,et al.  The impact of surface morphology on the magnetovolume transition in magnetocaloric LaFe11.8Si1.2 , 2016 .

[40]  A. Yan,et al.  LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing , 2016 .

[41]  X. Moya,et al.  Preface to Special Topic: Caloric Materials , 2016 .

[42]  Jing Zhang,et al.  Improvement of magnetic hysteresis loss, corrosion resistance and compressive strength through spark plasma sintering magnetocaloric LaFe11.65Si1.35/Cu core-shell powders , 2016 .

[43]  H Wende,et al.  Mastering hysteresis in magnetocaloric materials , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  C. Colin,et al.  In-situ neutron investigation of hydrogen absorption kinetics in La(FexSi1−x)13 magnetocaloric alloys for room-temperature refrigeration application , 2016 .

[45]  G. Durin,et al.  Local magnetic behavior across the first order phase transition in La(Fe0.9Co0.015Si0.085)13 magneto caloric compound , 2016 .

[46]  J. Gelin,et al.  Thermoplastic filled with magnetocaloric powder , 2015 .

[47]  O. Gutfleisch,et al.  On the preparation of La(Fe,Mn,Si)13Hx polymer-composites with optimized magnetocaloric properties , 2015 .

[48]  V. Franco,et al.  Effect of α-Fe impurities on the field dependence of magnetocaloric response in LaFe11.5Si1.5 , 2015 .

[49]  H. Luo,et al.  Enhanced thermal conductivity in off-stoichiometric La-(Fe,Co)-Si magnetocaloric alloys , 2015 .

[50]  Xavier Moya,et al.  New developments in caloric materials for cooling applications , 2015 .

[51]  O. Gutfleisch,et al.  Polymer-Bonded La(Fe,Mn,Si)13Hx Plates for Heat Exchangers , 2015, IEEE Transactions on Magnetics.

[52]  J. Liu,et al.  LaFe11.6 Si1.4/Cu Magnetocaloric Composites Prepared by Hot Pressing , 2015, IEEE Transactions on Magnetics.

[53]  Y. Long,et al.  Corrosion behavior and ΔS-Tc relation of LaFe13−x−yCoxSiyCz compounds near room temperature , 2015 .

[54]  J. Lyubina,et al.  Dynamics of the First‐Order Metamagnetic Transition in Magnetocaloric La(Fe,Si)13: Reducing Hysteresis , 2015 .

[55]  P. Fajfar,et al.  Epoxy-bonded La–Fe–Co–Si magnetocaloric plates , 2015 .

[56]  J. Eckert,et al.  Asymmetric first‐order transition and interlocked particle state in magnetocaloric La(Fe,Si)13 , 2015 .

[57]  L. Yang,et al.  Influence of microstructural changes on magnetic refrigeration performance for La(Fe0.94Co0.06)11.8Si1.2 alloys during magnetic field cycling , 2015 .

[58]  J. Eckert,et al.  A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous metallic matrix , 2015 .

[59]  V. Franco,et al.  A procedure to extract the magnetocaloric parameters of the single phases from experimental data of a multiphase system , 2014 .

[60]  M. Kuz’min,et al.  Heat exchangers made of polymer-bonded La(Fe,Si)13 , 2014 .

[61]  V. Basso,et al.  Dynamics of the magneto structural phase transition in La(Fe0.9Co0.015Si0.085)13 observed by magneto-optical imaging , 2014 .

[62]  F. Hu,et al.  Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)(13)-based magnetic refrigeration materials , 2014 .

[63]  Andrej Kitanovski,et al.  Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator , 2014 .

[64]  A. Fujita,et al.  Kinetics of thermally induced first-order magnetic transition in La(Fe0.88Si0.12)13 itinerant electron metamagnet , 2013 .

[65]  Andrej Kitanovski,et al.  Geometrical optimization of packed-bed and parallel-plate active magnetic regenerators , 2013 .

[66]  W. Fan,et al.  Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. , 2013, Journal of the American Chemical Society.

[67]  M. Acet,et al.  Advanced materials for solid-state refrigeration , 2013, 1303.3811.

[68]  N. Tian,et al.  Magnetic hysteresis loss and corrosion behavior of LaFe11.5Si1.5 particles coated with Cu , 2013 .

[69]  O. Gutfleisch,et al.  Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4 , 2013 .

[70]  V. Franco,et al.  Influence of magnetic interactions between phases on the magnetocaloric effect of composites , 2013 .

[71]  U. Hannemann,et al.  Novel La(Fe,Si)13/Cu Composites for Magnetic Cooling , 2012 .

[72]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[73]  O. Gutfleisch,et al.  Exploring La(Fe,Si)13-based magnetic refrigerants towards application , 2012 .

[74]  K. Gschneidner,et al.  On the nature of the magnetocaloric effect of the first-order magnetostructural transition , 2012 .

[75]  V. Franco,et al.  The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models , 2012 .

[76]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[77]  Kaspar Kirstein Nielsen,et al.  The influence of the solid thermal conductivity on active magnetic regenerators , 2012 .

[78]  F. Hu,et al.  Particle size dependent hysteresis loss in La0.7Ce0.3Fe11.6Si1.4C0.2 first‐order systems , 2012 .

[79]  K. G. Sandeman Magnetocaloric materials: The search for new systems , 2012, 1201.3113.

[80]  T. Zhao,et al.  Influence of interstitial and substitutional atoms on the crystal structure of La(FeSi)13 , 2011 .

[81]  J. Lyubina Recent advances in the microstructure design of materials for near room temperature magnetic cooling (invited) , 2011 .

[82]  V. Franco,et al.  Optimization of the refrigerant capacity in multiphase magnetocaloric materials , 2011 .

[83]  P. Egolf,et al.  A review of magnetic refrigerator and heat pump prototypes built before the year 2010 , 2010 .

[84]  L. Schultz,et al.  Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance , 2010, Advanced materials.

[85]  F. Hu,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[86]  Heng Zhang,et al.  The influence of a minority magnetic phase on the field dependence of the magnetocaloric effect , 2009 .

[87]  L. Cohen,et al.  Capturing first- and second-order behavior in magnetocaloric CoMnSi0.92Ge0.08 , 2009 .

[88]  P. Egolf,et al.  Application of magnetic refrigeration and its assessment , 2009 .

[89]  M. Kuz’min Factors limiting the operation frequency of magnetic refrigerators , 2007 .

[90]  V. Franco,et al.  Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change , 2006 .

[91]  Z. Altounian,et al.  Phase formation and magnetocaloric effect in rapidly quenched La(Fe1−xCox)11.4Si1.6 , 2005 .

[92]  Kazuaki Fukamichi,et al.  Design and performance of a permanent-magnet rotary refrigerator , 2005 .

[93]  D. Ryan,et al.  The order of magnetic phase transition in La(Fe1-xCox)11.4Si1.6 compounds , 2004 .

[94]  S. Fujieda,et al.  Thermal transport properties of magnetic refrigerants La(FexSi1−x)13 and their hydrides, and Gd5Si2Ge2 and MnAs , 2004 .

[95]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[96]  S. Fujieda,et al.  Giant magnetic entropy change in hydrogenated La(Fe0.88Si0.12)13Hy compounds , 2002 .

[97]  T. Goto,et al.  Itinerant-electron metamagnetic transition and large magnetovolume effects in La(Fe x Si 1-x ) 13 compounds , 2001 .

[98]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[99]  F. Hu,et al.  Great magnetic entropy change in La(Fe, M)13 (M=Si, Al) with Co doping , 2000 .

[100]  F. Hu,et al.  Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy , 2000 .

[101]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[102]  R. Chahine,et al.  Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .

[103]  H. Yamada,et al.  Negative mode-mode coupling among spin fluctuations and the magneto-volume effect in an itinerant-electron ferromagnet , 1994 .

[104]  J. Graebner,et al.  Large anisotropic thermal conductivity in synthetic diamond films , 1992, Nature.

[105]  D. Hasselman,et al.  Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .

[106]  F. Parker,et al.  Magnetic cooling near Curie temperatures above 300 K , 1984 .

[107]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[108]  Feng Xu,et al.  Novel fabrication of honeycomb-like magnetocaloric regenerators via a self-organization process , 2022, Scripta Materialia.