Quadrature Strategies for Constructing Polynomial Approximations

Finding suitable points for multivariate polynomial interpolation and approximation is a challenging task. Yet, despite this challenge, there has been tremendous research dedicated to this singular cause. In this paper, we begin by reviewing classical methods for finding suitable quadrature points for polynomial approximation in both the univariate and multivariate setting. Then, we categorize recent advances into those that propose a new sampling approach, and those centered on an optimization strategy. The sampling approaches yield a favorable discretization of the domain, while the optimization methods pick a subset of the discretized samples that minimize certain objectives. While not all strategies follow this two-stage approach, most do. Sampling techniques covered include subsampling quadratures, Christoffel, induced and Monte Carlo methods. Optimization methods discussed range from linear programming ideas and Newton’s method to greedy procedures from numerical linear algebra. Our exposition is aided by examples that implement some of the aforementioned strategies.

[1]  Albert Cohen,et al.  On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.

[2]  Luis Rademacher,et al.  Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[3]  Pranay Seshadri,et al.  A density-matching approach for optimization under uncertainty , 2014, 1510.04162.

[4]  Jed A. Duersch,et al.  Randomized QR with Column Pivoting , 2015, SIAM J. Sci. Comput..

[5]  Akil Narayan,et al.  Generation and application of multivariate polynomial quadrature rules , 2017, Computer Methods in Applied Mechanics and Engineering.

[6]  Malik Magdon-Ismail,et al.  On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..

[7]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[8]  Geoffrey T. Parks,et al.  Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies , 2017, J. Open Source Softw..

[9]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[10]  Geoffrey T. Parks,et al.  Turbomachinery Active Subspace Performance Maps , 2018 .

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[13]  Jan Nordström,et al.  Polynomial Chaos Methods for Hyperbolic Partial Differential Equations: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties , 2015 .

[14]  A. Doostan,et al.  Least squares polynomial chaos expansion: A review of sampling strategies , 2017, 1706.07564.

[15]  W. Morven Gentleman Implementing Clenshaw-Curtis quadrature, I methodology and experience , 1972, CACM.

[16]  Alvise Sommariva,et al.  Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..

[17]  Dongbin Xiu,et al.  Weighted discrete least-squares polynomial approximation using randomized quadratures , 2015, J. Comput. Phys..

[18]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[19]  Dirk Laurie,et al.  Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..

[20]  Daan Huybrechs,et al.  APPROXIMATING SMOOTH, MULTIVARIATE FUNCTIONS ON IRREGULAR DOMAINS , 2018, Forum of Mathematics, Sigma.

[21]  Rex K. Kincaid,et al.  D-optimal designs for sensor and actuator locations , 2002, Comput. Oper. Res..

[22]  A. Atkinson Subset Selection in Regression , 1992 .

[23]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[24]  Dongbin Xiu,et al.  On a near optimal sampling strategy for least squares polynomial regression , 2016, J. Comput. Phys..

[25]  Shahrokh Shahpar,et al.  Toward Affordable Uncertainty Quantification for Industrial Problems: Part II — Turbomachinery Application , 2017 .

[26]  M. Gu,et al.  Strong rank revealing LU factorizations , 2003 .

[27]  Ilse C. F. Ipsen,et al.  On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..

[28]  Lloyd N. Trefethen,et al.  Cubature, Approximation, and Isotropy in the Hypercube , 2017, SIAM Rev..

[29]  Stephen P. Boyd,et al.  Extensions of Gauss Quadrature Via Linear Programming , 2014, Found. Comput. Math..

[30]  Akil Narayan,et al.  Computation of Induced Orthogonal Polynomial Distributions , 2017, 1704.08465.

[31]  Per Christian Hansen,et al.  Low-rank revealing QR factorizations , 1994, Numer. Linear Algebra Appl..

[32]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[33]  Ramesh Govindan,et al.  Utility based sensor selection , 2006, IPSN.

[34]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[35]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[36]  Kailiang Wu,et al.  A Randomized Tensor Quadrature Method for High Dimensional Polynomial Approximation , 2017, SIAM J. Sci. Comput..

[37]  Dongbin Xiu,et al.  Nonadaptive Quasi-Optimal Points Selection for Least Squares Linear Regression , 2016, SIAM J. Sci. Comput..

[38]  Tao Zhou,et al.  A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..

[39]  Fabio Nobile,et al.  Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..

[40]  Alvise Sommariva,et al.  Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave , 2010, Numerical Algorithms.

[41]  Fabio Nobile,et al.  Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets , 2015, J. Complex..

[42]  Alireza Doostan,et al.  Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.

[43]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[44]  Robert Michael Kirby,et al.  Numerical Integration in Multiple Dimensions with Designed Quadrature , 2018, SIAM J. Sci. Comput..

[45]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[46]  Gary Tang,et al.  Subsampled Gauss Quadrature Nodes for Estimating Polynomial Chaos Expansions , 2014, SIAM/ASA J. Uncertain. Quantification.

[47]  W. Gautschi Orthogonal polynomials-Constructive theory and applications * , 1985 .

[48]  Benjamin Peherstorfer,et al.  Spatially adaptive sparse grids for high-dimensional data-driven problems , 2010, J. Complex..

[49]  Dongbin Xiu,et al.  A Randomized Algorithm for Multivariate Function Approximation , 2017, SIAM J. Sci. Comput..

[50]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[51]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[52]  Robert A. van de Geijn,et al.  Householder QR Factorization With Randomization for Column Pivoting (HQRRP) , 2015, SIAM J. Sci. Comput..

[53]  Marco Vianello,et al.  Bivariate interpolation at Xu points: results, extensions and applications. , 2006 .

[54]  A. Cohen,et al.  Optimal weighted least-squares methods , 2016, 1608.00512.

[55]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: the ideal theory approach , 2007, Numerische Mathematik.

[56]  Å. Björck Numerical Methods in Matrix Computations , 2014 .

[57]  Achiya Dax,et al.  A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting , 2000 .

[58]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[59]  Liang Yan,et al.  Weighted Approximate Fekete Points: Sampling for Least-Squares Polynomial Approximation , 2017, SIAM J. Sci. Comput..

[60]  Gianluca Iaccarino,et al.  Least Squares Approximation of Polynomial Chaos Expansions With Optimized Grid Points , 2017, SIAM J. Sci. Comput..

[61]  J. Burkardt Slow Exponential Growth for Clenshaw Curtis Sparse Grids , 2014 .

[62]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[63]  Sankaran Mahadevan,et al.  Effectively Subsampled Quadratures for Least Squares Polynomial Approximations , 2016, SIAM/ASA J. Uncertain. Quantification.

[64]  Tarandeep S. Kalra,et al.  Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2) , 2017 .

[65]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[66]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: The generating curve approach , 2006, J. Approx. Theory.

[67]  Geir Hovland,et al.  Dynamic sensor selection for robotic systems , 1997, Proceedings of International Conference on Robotics and Automation.

[68]  Geoffrey T. Parks,et al.  Leakage Uncertainties in Compressors: The Case of Rotor 37 , 2015 .