Quadrature Strategies for Constructing Polynomial Approximations
暂无分享,去创建一个
Gianluca Iaccarino | Pranay Seshadri | Tiziano Ghisu | G. Iaccarino | T. Ghisu | P. Seshadri | Pranay Seshadri
[1] Albert Cohen,et al. On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.
[2] Luis Rademacher,et al. Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[3] Pranay Seshadri,et al. A density-matching approach for optimization under uncertainty , 2014, 1510.04162.
[4] Jed A. Duersch,et al. Randomized QR with Column Pivoting , 2015, SIAM J. Sci. Comput..
[5] Akil Narayan,et al. Generation and application of multivariate polynomial quadrature rules , 2017, Computer Methods in Applied Mechanics and Engineering.
[6] Malik Magdon-Ismail,et al. On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..
[7] W. Gautschi. A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .
[8] Geoffrey T. Parks,et al. Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies , 2017, J. Open Source Softw..
[9] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[10] Geoffrey T. Parks,et al. Turbomachinery Active Subspace Performance Maps , 2018 .
[11] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[12] Stephen P. Boyd,et al. Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.
[13] Jan Nordström,et al. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties , 2015 .
[14] A. Doostan,et al. Least squares polynomial chaos expansion: A review of sampling strategies , 2017, 1706.07564.
[15] W. Morven Gentleman. Implementing Clenshaw-Curtis quadrature, I methodology and experience , 1972, CACM.
[16] Alvise Sommariva,et al. Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..
[17] Dongbin Xiu,et al. Weighted discrete least-squares polynomial approximation using randomized quadratures , 2015, J. Comput. Phys..
[18] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[19] Dirk Laurie,et al. Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..
[20] Daan Huybrechs,et al. APPROXIMATING SMOOTH, MULTIVARIATE FUNCTIONS ON IRREGULAR DOMAINS , 2018, Forum of Mathematics, Sigma.
[21] Rex K. Kincaid,et al. D-optimal designs for sensor and actuator locations , 2002, Comput. Oper. Res..
[22] A. Atkinson. Subset Selection in Regression , 1992 .
[23] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[24] Dongbin Xiu,et al. On a near optimal sampling strategy for least squares polynomial regression , 2016, J. Comput. Phys..
[25] Shahrokh Shahpar,et al. Toward Affordable Uncertainty Quantification for Industrial Problems: Part II — Turbomachinery Application , 2017 .
[26] M. Gu,et al. Strong rank revealing LU factorizations , 2003 .
[27] Ilse C. F. Ipsen,et al. On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..
[28] Lloyd N. Trefethen,et al. Cubature, Approximation, and Isotropy in the Hypercube , 2017, SIAM Rev..
[29] Stephen P. Boyd,et al. Extensions of Gauss Quadrature Via Linear Programming , 2014, Found. Comput. Math..
[30] Akil Narayan,et al. Computation of Induced Orthogonal Polynomial Distributions , 2017, 1704.08465.
[31] Per Christian Hansen,et al. Low-rank revealing QR factorizations , 1994, Numer. Linear Algebra Appl..
[32] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[33] Ramesh Govindan,et al. Utility based sensor selection , 2006, IPSN.
[34] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[35] Youssef M. Marzouk,et al. Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..
[36] Kailiang Wu,et al. A Randomized Tensor Quadrature Method for High Dimensional Polynomial Approximation , 2017, SIAM J. Sci. Comput..
[37] Dongbin Xiu,et al. Nonadaptive Quasi-Optimal Points Selection for Least Squares Linear Regression , 2016, SIAM J. Sci. Comput..
[38] Tao Zhou,et al. A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..
[39] Fabio Nobile,et al. Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..
[40] Alvise Sommariva,et al. Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave , 2010, Numerical Algorithms.
[41] Fabio Nobile,et al. Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets , 2015, J. Complex..
[42] Alireza Doostan,et al. Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.
[43] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[44] Robert Michael Kirby,et al. Numerical Integration in Multiple Dimensions with Designed Quadrature , 2018, SIAM J. Sci. Comput..
[45] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[46] Gary Tang,et al. Subsampled Gauss Quadrature Nodes for Estimating Polynomial Chaos Expansions , 2014, SIAM/ASA J. Uncertain. Quantification.
[47] W. Gautschi. Orthogonal polynomials-Constructive theory and applications * , 1985 .
[48] Benjamin Peherstorfer,et al. Spatially adaptive sparse grids for high-dimensional data-driven problems , 2010, J. Complex..
[49] Dongbin Xiu,et al. A Randomized Algorithm for Multivariate Function Approximation , 2017, SIAM J. Sci. Comput..
[50] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[51] Stephen P. Boyd,et al. Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[52] Robert A. van de Geijn,et al. Householder QR Factorization With Randomization for Column Pivoting (HQRRP) , 2015, SIAM J. Sci. Comput..
[53] Marco Vianello,et al. Bivariate interpolation at Xu points: results, extensions and applications. , 2006 .
[54] A. Cohen,et al. Optimal weighted least-squares methods , 2016, 1608.00512.
[55] Marco Vianello,et al. Bivariate Lagrange interpolation at the Padua points: the ideal theory approach , 2007, Numerische Mathematik.
[56] Å. Björck. Numerical Methods in Matrix Computations , 2014 .
[57] Achiya Dax,et al. A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting , 2000 .
[58] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[59] Liang Yan,et al. Weighted Approximate Fekete Points: Sampling for Least-Squares Polynomial Approximation , 2017, SIAM J. Sci. Comput..
[60] Gianluca Iaccarino,et al. Least Squares Approximation of Polynomial Chaos Expansions With Optimized Grid Points , 2017, SIAM J. Sci. Comput..
[61] J. Burkardt. Slow Exponential Growth for Clenshaw Curtis Sparse Grids , 2014 .
[62] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[63] Sankaran Mahadevan,et al. Effectively Subsampled Quadratures for Least Squares Polynomial Approximations , 2016, SIAM/ASA J. Uncertain. Quantification.
[64] Tarandeep S. Kalra,et al. Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2) , 2017 .
[65] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[66] Marco Vianello,et al. Bivariate Lagrange interpolation at the Padua points: The generating curve approach , 2006, J. Approx. Theory.
[67] Geir Hovland,et al. Dynamic sensor selection for robotic systems , 1997, Proceedings of International Conference on Robotics and Automation.
[68] Geoffrey T. Parks,et al. Leakage Uncertainties in Compressors: The Case of Rotor 37 , 2015 .