EDGE-PRESERVING REGULARIZATION SCHEME APPLIED TO MODIFIED GRADIENT METHOD TO RECONSTRUCT TWO-DIMENSIONAL TARGETS FROM DATA LABORATORY-CONTROLLED

[1]  M. Saillard,et al.  Validation of 2d iNverse Scattering Algorithms From Multi-Frequency Experimental Data , 2000 .

[2]  D. Lesselier,et al.  The retrieval of a buried cylindrical obstacle by a constrained modified gradient method in the H-polarization case and for Maxwellian materials , 1998 .

[3]  A. Baussard,et al.  A MARKOVIAN REGULARIZATION APPROACH OF THE MODIFIED GRADIENT METHOD FOR SOLVING A TWO-DIMENSIONAL INVERSE SCATTERING PROBLEM , 2003 .

[4]  M. Saillard,et al.  Special section: Testing inversion algorithms against experimental data , 2001 .

[5]  M. Barlaud,et al.  Nonlinear image processing: modeling and fast algorithm for regularization with edge detection , 1995, Proceedings., International Conference on Image Processing.

[6]  Aria Abubakar,et al.  Total variation as a multiplicative constraint for solving inverse problems , 2001, IEEE Trans. Image Process..

[7]  Yoram Bresler,et al.  Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography , 1998, IEEE Trans. Image Process..

[8]  L. Blanc-Féraud,et al.  A new regularization scheme for inverse scattering , 1997 .

[9]  P. M. Berg,et al.  A total variation enhanced modified gradient algorithm for profile reconstruction , 1995 .

[10]  Michel Barlaud,et al.  Regularized bi-conjugate gradient algorithm for tomographic reconstruction of buried objects , 2000 .

[11]  P. M. Berg,et al.  A modified gradient method for two-dimensional problems in tomography , 1992 .

[12]  William H. Press,et al.  Numerical recipes , 1990 .

[13]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..