Deterministic Global Optimization for Parameter Estimation of Dynamic Systems

A method is presented for deterministic global optimization in the estimation of parameters in models of dynamic systems. The method can be implemented as an e-global algorithm or, by use of the interval-Newton method, as an exact algorithm. In the latter case, the method provides a mathematically guaranteed and computationally validated global optimum in the goodness-of-fit function. A key feature of the method is the use of a new validated solver for parametric ordinary differential equations (ODEs), which is used to produce guaranteed bounds on the solutions of dynamic systems with interval-valued parameters, as well as on the first- and second-order sensitivities of the state variables with respect to the parameters. The computational efficiency of the method is demonstrated using several benchmark problems.

[1]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[2]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[3]  A. Neumaier Interval methods for systems of equations , 1990 .

[4]  L. Biegler,et al.  Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems , 1991 .

[5]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[6]  Warren E. Stewart,et al.  Parameter estimation from multiresponse data , 1992 .

[7]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[8]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[9]  Vladik Kreinovich,et al.  COMPUTING EXACT COMPONENTWISE BOUNDS ON SOLUTIONS OF LINEAR SYSTEMS WITH INTERVAL DATA IS NP-HARD∗ , 1995 .

[10]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[11]  Nils Tönshoff,et al.  Implementation and Computational Results , 1997 .

[12]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[13]  Kyoko Makino,et al.  Rigorous analysis of nonlinear motion in particle accelerators , 1998 .

[14]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[15]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[16]  Martin Berz,et al.  Efficient Control of the Dependency Problem Based on Taylor Model Methods , 1999, Reliab. Comput..

[17]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[18]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[19]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[20]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[21]  Mark A. Stadtherr,et al.  New interval methodologies for reliable chemical process modeling , 2002 .

[22]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[23]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[24]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[25]  Youdong Lin,et al.  LP strategy for the interval-Newton method in deterministic global optimization , 2004 .

[26]  Claire S. Adjiman,et al.  Global optimization of dynamic systems , 2004, Comput. Chem. Eng..

[27]  Y. Lin,et al.  Advances in Interval Methods for Deterministic Global Optimization in Chemical Engineering , 2004, J. Glob. Optim..

[28]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[29]  Nathalie Revol,et al.  Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY , 2005, J. Log. Algebraic Methods Program..

[30]  Paul I. Barton,et al.  Global Optimization with Nonlinear Ordinary Differential Equations , 2006, J. Glob. Optim..

[31]  M. Stadtherr,et al.  Validated solutions of initial value problems for parametric ODEs , 2007 .