T-shape visibility representations of 1-planar graphs

Abstract A shape visibility representation displays a graph so that each vertex is represented by an orthogonal polygon of a particular shape and for each edge there is a horizontal or vertical line of sight of width ϵ > 0 between the polygons assigned to its endvertices. Special shapes are rectangles, L , T , E , and H -shapes, and caterpillars. A graph is 1-planar if there is a drawing in the plane such that each edge is crossed at most once and is IC-planar if in addition no two crossed edges share a vertex. We show that every IC-planar graph has a flat rectangle visibility representation, in which each rectangle has height ϵ, and that every 1-planar graph has a T -shape visibility representation. The representations use quadratic area and can be computed in linear time from a given embedding.

[1]  Franz-Josef Brandenburg,et al.  Journal of Graph Algorithms and Applications 1-planarity of Graphs with a Rotation System 68 Auer Et Al. 1-planarity of Graphs with a Rotation System , 2022 .

[2]  Daniel Král,et al.  Coloring plane graphs with independent crossings , 2010, J. Graph Theory.

[3]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[4]  Zhi-Zhong Chen,et al.  Recognizing Hole-Free 4-Map Graphs in Cubic Time , 2005, Algorithmica.

[5]  Giuseppe Liotta,et al.  L-visibility drawings of IC-planar graphs , 2015, Inf. Process. Lett..

[6]  K. Wagner,et al.  Bemerkungen zu einem Sechsfarbenproblem von G. Ringel , 1983 .

[7]  Thomas C. Shermer,et al.  On Rectangle Visibility Graphs. III. External Visibility and Complexity , 1996, CCCG.

[8]  Oleg V. Borodin A new proof of the 6 color theorem , 1995, J. Graph Theory.

[9]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[10]  Franz-Josef Brandenburg 1-Visibility Representations of 1-Planar Graphs , 2014, J. Graph Algorithms Appl..

[11]  Xin Zhang,et al.  The structure of plane graphs with independent crossings and its applications to coloring problems , 2013 .

[12]  Ulrik Brandes,et al.  More Canonical Ordering , 2011, J. Graph Algorithms Appl..

[13]  Emilio Di Giacomo,et al.  Ortho-polygon Visibility Representations of Embedded Graphs , 2016, Algorithmica.

[14]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[15]  Robert E. Tarjan,et al.  Computing an st -Numbering , 1976, Theor. Comput. Sci..

[16]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2013, J. Graph Theory.

[17]  Robert E. Tarjan,et al.  Rectilinear planar layouts and bipolar orientations of planar graphs , 1986, Discret. Comput. Geom..

[18]  Yusuke Suzuki Re-embeddings of Maximum 1-Planar Graphs , 2010, SIAM J. Discret. Math..

[19]  David Harel,et al.  An Algorithm for Straight-Line Drawing of Planar Graphs , 1995, Algorithmica.

[20]  Franz-Josef Brandenburg On 4-Map Graphs and 1-Planar Graphs and their Recognition Problem , 2015, ArXiv.

[21]  Carsten Thomassen,et al.  Rectilinear drawings of graphs , 1988, J. Graph Theory.

[22]  Giuseppe Liotta,et al.  Simultaneous visibility representations of plane st-graphs using L-shapes , 2016, Theor. Comput. Sci..

[23]  Franz-Josef Brandenburg,et al.  Recognizing Optimal 1-Planar Graphs in Linear Time , 2016, Algorithmica.

[24]  Goos Kant,et al.  Drawing planar graphs using the canonical ordering , 1996, Algorithmica.

[25]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[26]  Michael Kaufmann,et al.  On Bar (1, j)-Visibility Graphs - (Extended Abstract) , 2015, WALCOM.

[27]  Petra Mutzel,et al.  A Linear Time Implementation of SPQR-Trees , 2000, GD.

[28]  TamassiaRoberto,et al.  On-Line Planarity Testing , 1996 .

[29]  Stephen K. Wismath,et al.  Characterizing bar line-of-sight graphs , 1985, SCG '85.

[30]  Giuseppe Liotta,et al.  An annotated bibliography on 1-planarity , 2017, Comput. Sci. Rev..

[31]  Michael Kaufmann,et al.  Bar 1-Visibility Graphs vs. other Nearly Planar Graphs , 2014, J. Graph Algorithms Appl..

[32]  M. Kaufmann Bar 1-Visibility Graphs vs. other Nearly Planar Graphs , 2014 .

[33]  Giuseppe Liotta,et al.  Embedding-Preserving Rectangle Visibility Representations of Nonplanar Graphs , 2015, Discrete & Computational Geometry.

[34]  David Eppstein,et al.  On the Density of Maximal 1-Planar Graphs , 2012, Graph Drawing.

[35]  Goos Kant,et al.  A More Compact Visibility Representation , 1997, Int. J. Comput. Geom. Appl..

[36]  Stefan Felsner,et al.  Parameters of Bar k-Visibility Graphs , 2008, J. Graph Algorithms Appl..

[37]  K. Wagner,et al.  Über 1-optimale Graphen , 1984 .

[38]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..

[39]  Ellen Gethner,et al.  Bar k-Visibility Graphs , 2007, J. Graph Algorithms Appl..

[40]  Thomas Andreae Some Results on Visibility Graphs , 1992, Discret. Appl. Math..

[41]  Thomas C. Shermer,et al.  On representations of some thickness-two graphs , 1995, Comput. Geom..

[42]  Prosenjit Bose,et al.  On Rectangle Visibility Graphs , 1996, GD.

[43]  Yahya Ould Hamidoune,et al.  Representing a planar graph by vertical lines joining different levels , 1983, Discret. Math..

[44]  Therese C. Biedl,et al.  Small Drawings of Outerplanar Graphs, Series-Parallel Graphs, and Other Planar Graphs , 2011, Discret. Comput. Geom..

[45]  Walter Didimo,et al.  Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..

[46]  Michael O. Albertson Chromatic number, independence ratio, and crossing number , 2008, Ars Math. Contemp..

[47]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2009, J. Graph Theory.

[48]  Roberto Tamassia,et al.  On-Line Planarity Testing , 1989, SIAM J. Comput..

[49]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[50]  Christian Bachmaier,et al.  NIC-planar graphs , 2017, Discret. Appl. Math..

[51]  Von H. Schumacher Zur Struktur 1‐planarer Graphen , 1986 .