Multiple comparisons with the best using common random numbers for steady-state simulations

[1]  P. Haas On simulation output analysis for generalized semi-markov processes , 1999 .

[2]  Marvin K. Nakayama,et al.  Two-stage multiple-comparison procedures for steady-state simulations , 1999, TOMC.

[3]  Marvin K. Nakayama,et al.  Multiple-comparison procedures for steady-state simulations , 1997 .

[4]  Peter R. Nelson,et al.  Multiple Comparisons: Theory and Methods , 1997 .

[5]  B. Nelson,et al.  Using common random numbers for indifference-zone selection and multiple comparisons in simulation , 1995 .

[6]  Barry L. Nelson,et al.  Two-Stage Multiple Comparisons with the Best for Computer Simulation , 1995, Oper. Res..

[7]  Marvin K. Nakayama,et al.  Two-stage stopping procedures based on standardized time series , 1994 .

[8]  James R. Wilson,et al.  Estimating simulation metamodels using combined correlation-based variance reduction techniques , 1994 .

[9]  Barry L. Nelson,et al.  Control-variate models of common random numbers for multiple comparisons with the best , 1993 .

[10]  Barry L. Nelson Robust multiple comparisons under common random numbers , 1993, TOMC.

[11]  Barry L. Nelson,et al.  Multiple comparisons with the best for steady-state simulation , 1993, TOMC.

[12]  Wei-Ning Yang,et al.  Using Common Random Numbers and Control Variates in Multiple-Comparison Procedures , 1991, Oper. Res..

[13]  Barry L. Nelson,et al.  Batch-size effects on simulation optimization using multiple comparisons with the best , 1990, 1990 Winter Simulation Conference Proceedings.

[14]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..

[15]  Itzhak Gilboa,et al.  Additivizations of Nonadditive Measures , 1989, Math. Oper. Res..

[16]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[17]  Claude Dennis Pegden,et al.  Statistical Analysis for Use with the Schruben and Margolin Correlation Induction Strategy , 1987, Oper. Res..

[18]  Wei-Ning Yang,et al.  A Bonferroni selection procedure when using commom random numbers with unknown variances , 1986, WSC '86.

[19]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[20]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[21]  J. Hsu Constrained Simultaneous Confidence Intervals for Multiple Comparisons with the Best , 1984 .

[22]  A. Grieve,et al.  Tests of sphericity of normal distributions and the analysis of repeated measures designs , 1984 .

[23]  Thomas J. Santner,et al.  Design of experiments : ranking and selection : essays in honor of Robert E. Bechhofer , 1984 .

[24]  J. Hsu,et al.  Multiple Comparisons with the Best Treatment , 1983 .

[25]  L. Schrage,et al.  A guide to simulation , 1983 .

[26]  J. Hsu Simultaneous Confidence Intervals for all Distances from the "Best" , 1981 .

[27]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[28]  Lee W. Schruben,et al.  Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments , 1978 .

[29]  H. Huynh,et al.  Conditions under Which Mean Square Ratios in Repeated Measurements Designs Have Exact F-Distributions , 1970 .

[30]  Hayne W. Reese,et al.  Multiple comparison methods. , 1970 .