On Generalized Planar Skyline and Convex Hull Range Queries

We present output sensitive techniques for the generalized reporting versions of the planar range maxima problem and the planar range convex hull problem. Our solutions are in the pointer machine model, for orthogonal range queries on a static point set. We solve the planar range maxima problem for two-sided, three-sided and four-sided queries. We achieve a query time of O(logn + c) using O(n) space for the two-sided case, where n denotes the number of stored points and c the number of colors reported. For the three-sided case, we achieve query time O(log2 n + clogn) using O(n) space while for four-sided queries we answer queries in O(log3 n + clog2 n) using O(nlogn) space. For the planar range convex hull problem, we provide a solution that answers queries in O(log2 n + clogn) time, using O(nlog2 n) space.

[1]  Ravi Janardan,et al.  Computational geometry: Generalized intersection searching , 2005 .

[2]  Gonzalo Navarro,et al.  Colored range queries and document retrieval , 2013, Theor. Comput. Sci..

[3]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[4]  David G. Kirkpatrick,et al.  Computing Common Tangents Without a Separating Line , 1995, WADS.

[5]  Michiel H. M. Smid,et al.  Algorithms for Generalized Halfspace Range Searching and Other Intersection Searching Problems , 1995, Comput. Geom..

[6]  Prosenjit Gupta,et al.  Range aggregate structures for colored geometric objects , 2010, CCCG.

[7]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[8]  Joseph JáJá,et al.  Optimal and near-optimal algorithms for generalized intersection reporting on pointer machines , 2005, Inf. Process. Lett..

[9]  Edward M. McCreight,et al.  Priority Search Trees , 1985, SIAM J. Comput..

[10]  Gerth Stølting Brodal,et al.  Dynamic Planar Range Maxima Queries , 2011, ICALP.

[11]  Stephen Alstrup,et al.  New data structures for orthogonal range searching , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[12]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[13]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[14]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[15]  Pankaj K. Agarwal,et al.  Range Searching in Categorical Data: Colored Range Searching on Grid , 2002, ESA.

[16]  Michiel H. M. Smid,et al.  Range-Aggregate Queries for Geometric Extent Problems , 2013, CATS.

[17]  Michiel H. M. Smid,et al.  A Technique for Adding Range Restrictions to Generalized Searching Problems , 1997, Inf. Process. Lett..

[18]  Kishore Kothapalli,et al.  Planar Convex Hull Range Query and Related Problems , 2013, CCCG.

[19]  Saladi Rahul,et al.  Algorithms for range-skyline queries , 2012, SIGSPATIAL/GIS.

[20]  Michiel H. M. Smid,et al.  Further Results on Generalized Intersection Searching Problems: Counting, Reporting, and Dynamization , 1995, J. Algorithms.

[21]  Robert E. Tarjan,et al.  Applications of Path Compression on Balanced Trees , 1979, JACM.

[22]  Panayiotis Bozanis,et al.  New Upper Bounds for Generalized Intersection Searching Problems , 1995, ICALP.

[23]  Michiel H. M. Smid,et al.  Efficient algorithms for generalized intersection searching on non-iso-oriented objects , 1994, SCG '94.

[24]  Ananda Swarup Das,et al.  On Counting Range Maxima Points in Plane , 2012, IWOCA.

[25]  Mario A. López,et al.  Generalized intersection searching problems , 1993, Int. J. Comput. Geom. Appl..

[26]  Rajeev Raman,et al.  Algorithms — ESA 2002 , 2002, Lecture Notes in Computer Science.

[27]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.