A Krylov Subspace Method for Covariance Approximation and Simulation of Random Processes and Fields
暂无分享,去创建一个
[1] Thomas Kailath,et al. Fast subspace decomposition , 1994, IEEE Trans. Signal Process..
[2] Thomas Kailath,et al. Application of fast subspace decomposition to signal processing and communication problems , 1994, IEEE Trans. Signal Process..
[3] H. V. D. Vorst,et al. An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .
[4] Michael K. Schneider,et al. Krylov Subspace Estimation , 2000, SIAM J. Sci. Comput..
[5] S. Mallat,et al. Adaptive covariance estimation of locally stationary processes , 1998 .
[6] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[7] C. R. Dietrich,et al. Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..
[8] W. W. Irving,et al. Multiscale stochastic realization and model identification with applications to large-scale estimation problems , 1995 .
[9] Ricardo Todling,et al. Suboptimal Schemes for Retrospective Data Assimilation Based on the Fixed-Lag Kalman Smoother , 1998 .
[10] Austin B. Frakt. Internal multiscale autoregressive processes, stochastic realization, and covariance extension , 1999 .
[11] G. Evensen,et al. Analysis Scheme in the Ensemble Kalman Filter , 1998 .
[12] D. McLaughlin,et al. Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .
[13] Christian L. Keppenne,et al. Data Assimilation into a Primitive-Equation Model with a Parallel Ensemble Kalman Filter , 2000 .
[14] T. Kailath,et al. Fast Estimation of Principal Eigenspace Using LanczosAlgorithm , 1994 .
[15] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[16] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[17] C. Cabos. Evaluation of matrix functions with the block Lanczos algorithm , 1997 .
[18] R. Todling,et al. Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter , 1994 .
[19] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[20] Gene H. Golub,et al. Fast algorithms for updating signal subspaces , 1994 .
[21] H. Vincent Poor,et al. Signal detection in fractional Gaussian noise , 1988, IEEE Trans. Inf. Theory.
[22] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[23] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[24] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .