暂无分享,去创建一个
[1] E. Arthur Robinson,et al. Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .
[2] P. Arnoux,et al. Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles , 1993 .
[3] Pierre Arnoux,et al. Higher dimensional extensions of substitutions and their dual maps , 2001 .
[4] Thomas Fernique. Generation and Recognition of Digital Planes Using Multi-dimensional Continued Fractions , 2008, DGCI.
[5] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[6] Jean-Pierre Reveillès,et al. Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .
[7] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[8] Shin-ichi Yasutomi,et al. On simultaneous approximation to (α,α2) with α3+kα−1=0 , 2003 .
[9] P. Paufler,et al. Quasicrystals and Geometry , 1997 .
[10] Charles Radin,et al. Space tilings and local isomorphism , 1992 .
[11] Damien Jamet. On the Language of Standard Discrete Planes and Surfaces , 2004, IWCIA.
[12] Yusuf Karakus. On simultaneous approximation , 2002 .
[13] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[14] Thomas Fernique,et al. Generation and recognition of digital planes using multi-dimensional continued fractions , 2008, Pattern Recognit..
[15] Pierre Arnoux,et al. Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .
[16] R. Milner. Mathematical Centre Tracts , 1976 .
[17] P. Arnoux,et al. Pisot substitutions and Rauzy fractals , 2001 .
[18] A. Brentjes,et al. Multi-dimensional continued fraction algorithms , 1981 .
[19] J. Lagarias. Geodesic Multidimensional Continued Fractions , 1994 .
[20] Pierre Arnoux,et al. Algebraic numbers, free group automorphisms and substitutions on the plane , 2011 .
[21] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[22] Randolph B. Tarrier,et al. Groups , 1973 .
[23] Laurent Vuillon,et al. Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..
[24] Michael Baake,et al. Directions in Mathematical Quasicrystals , 2000 .
[25] Eric Rémila,et al. A characterization of flip-accessibility for rhombus tilings of the whole plane , 2008, Inf. Comput..
[26] Pierre Arnoux,et al. Functional stepped surfaces, flips, and generalized substitutions , 2007, Theor. Comput. Sci..
[27] Hiromi Ei. Some properties of invertible substitutions of rank d, and higher dimensional substitutions , 2003 .
[28] Makoto Ohtsuki,et al. Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms , 1993 .
[29] Pierre-Jean Laurent,et al. On simultaneous approximation , 1998 .
[30] Fernique Thomas,et al. MULTIDIMENSIONAL STURMIAN SEQUENCES AND GENERALIZED SUBSTITUTIONS , 2006 .
[31] Fabien Durand,et al. Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.
[32] Marcy Barge,et al. Geometric theory of unimodular Pisot substitutions , 2006 .