Brun expansions of stepped surfaces

Dual maps have been introduced as a generalization to higher dimensions of word substitutions and free group morphisms. In this paper, we study the action of these dual maps on particular discrete planes and surfaces, namely stepped planes and stepped surfaces. We show that dual maps can be seen as discretizations of toral automorphisms. We then provide a connection between stepped planes and the Brun multi-dimensional continued fraction algorithm, based on a desubstitution process defined on local geometric configurations of stepped planes. By extending this connection to stepped surfaces, we obtain an effective characterization of stepped planes (more exactly, stepped quasi-planes) among stepped surfaces.

[1]  E. Arthur Robinson,et al.  Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .

[2]  P. Arnoux,et al.  Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles , 1993 .

[3]  Pierre Arnoux,et al.  Higher dimensional extensions of substitutions and their dual maps , 2001 .

[4]  Thomas Fernique Generation and Recognition of Digital Planes Using Multi-dimensional Continued Fractions , 2008, DGCI.

[5]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[6]  Jean-Pierre Reveillès,et al.  Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[7]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[8]  Shin-ichi Yasutomi,et al.  On simultaneous approximation to (α,α2) with α3+kα−1=0 , 2003 .

[9]  P. Paufler,et al.  Quasicrystals and Geometry , 1997 .

[10]  Charles Radin,et al.  Space tilings and local isomorphism , 1992 .

[11]  Damien Jamet On the Language of Standard Discrete Planes and Surfaces , 2004, IWCIA.

[12]  Yusuf Karakus On simultaneous approximation , 2002 .

[13]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[14]  Thomas Fernique,et al.  Generation and recognition of digital planes using multi-dimensional continued fractions , 2008, Pattern Recognit..

[15]  Pierre Arnoux,et al.  Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .

[16]  R. Milner Mathematical Centre Tracts , 1976 .

[17]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[18]  A. Brentjes,et al.  Multi-dimensional continued fraction algorithms , 1981 .

[19]  J. Lagarias Geodesic Multidimensional Continued Fractions , 1994 .

[20]  Pierre Arnoux,et al.  Algebraic numbers, free group automorphisms and substitutions on the plane , 2011 .

[21]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[22]  Randolph B. Tarrier,et al.  Groups , 1973 .

[23]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[24]  Michael Baake,et al.  Directions in Mathematical Quasicrystals , 2000 .

[25]  Eric Rémila,et al.  A characterization of flip-accessibility for rhombus tilings of the whole plane , 2008, Inf. Comput..

[26]  Pierre Arnoux,et al.  Functional stepped surfaces, flips, and generalized substitutions , 2007, Theor. Comput. Sci..

[27]  Hiromi Ei Some properties of invertible substitutions of rank d, and higher dimensional substitutions , 2003 .

[28]  Makoto Ohtsuki,et al.  Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms , 1993 .

[29]  Pierre-Jean Laurent,et al.  On simultaneous approximation , 1998 .

[30]  Fernique Thomas,et al.  MULTIDIMENSIONAL STURMIAN SEQUENCES AND GENERALIZED SUBSTITUTIONS , 2006 .

[31]  Fabien Durand,et al.  Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.

[32]  Marcy Barge,et al.  Geometric theory of unimodular Pisot substitutions , 2006 .