Review: titanium and titanium alloy applications in medicine

Titanium may be considered a relatively new engineering material. It was discovered much later than the other commonly used metals, its commercial application starting in the late 1940s. Its usage as an implant material began in the 1960s, despite the fact that titanium exhibits superior corrosion resistance and tissue acceptance when compared with stainless steels and Cr-Co-based alloys. This paper reviews the use of titanium and titanium alloys for use in biomedical applications.

[1]  F. Kosel,et al.  Generalized Plasticity and Uniaxial Constrained Recovery in Shape Memory Alloys , 2007 .

[2]  A. Dobromyslov,et al.  The orthorhombic α″-phase in binary titanium-base alloys with d-metals of V–VIII groups , 2006 .

[3]  J. I. Qazi,et al.  Titanium alloys for biomedical applications , 2006 .

[4]  Masafumi Kikuchi,et al.  Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. , 2006, Dental materials : official publication of the Academy of Dental Materials.

[5]  Johannes Lammer,et al.  Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. , 2006, The New England journal of medicine.

[6]  Won-Yong Kim,et al.  Microstructure and elastic modulus of Ti¿Nb¿Si ternary alloys for biomedical applications , 2006 .

[7]  M. von Walter,et al.  Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. , 2006, Biomaterials.

[8]  J. G. Ferrero,et al.  Candidate materials for high-strength fastener applications in both the aerospace and automotive industries , 2005 .

[9]  Toshikazu Akahori,et al.  Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys , 2005 .

[10]  Shigeki Katsura,et al.  Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications , 2005 .

[11]  Masahiko Ikeda,et al.  Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications , 2005 .

[12]  K. Katti,et al.  Biomaterials in total joint replacement. , 2004, Colloids and surfaces. B, Biointerfaces.

[13]  M. Maitz,et al.  Studies of surface modified NiTi alloy , 2004 .

[14]  Vassilis P. Panoskaltsis,et al.  On the thermomechanical modeling of shape memory alloys , 2004 .

[15]  Bob Rapp,et al.  Nitinol for stents , 2004 .

[16]  Motohiro Uo,et al.  Biocompatibility of materials and development to functionally graded implant for bio-medical application , 2004 .

[17]  M. Textor,et al.  Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. , 2004, Biomaterials.

[18]  Saibal Mukhopadhyay,et al.  Self- and balloon-expandable stent implantation for severe native coarctation of aorta in adults. , 2003, American heart journal.

[19]  M. Hashmi,et al.  Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source , 2003 .

[20]  S. Semiatin,et al.  Deformation behavior of beta-titanium alloys , 2003 .

[21]  Jeongwon Park,et al.  Improvement of the biocompatibility and mechanical properties of surgical tools with TiN coating by PACVD , 2003 .

[22]  H. Sibum,et al.  Titanium and Titanium Alloys—From Raw Material to Semi‐finished Products , 2003 .

[23]  Masakazu Kawashita,et al.  Novel bioactive materials with different mechanical properties. , 2003, Biomaterials.

[24]  Mitsuo Niinomi,et al.  Aging response of the young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications , 2003 .

[25]  Rui Yang,et al.  Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite , 2002 .

[26]  D. Lin,et al.  Effect of omega phase on deformation behavior of Ti–7.5Mo–xFe alloys , 2002 .

[27]  H. Fischer,et al.  Applications of Shape-Memory Alloys in Medical Instruments , 2002 .

[28]  Chun-cai Zhang,et al.  Design and Clinical Applications of Swan-Like Memory-Compressive Connector for Upper-Limb Diaphysis , 2002 .

[29]  Jiacan Su,et al.  Three-Dimensional Finite Element Analysis of Nitinol Patellar Concentrator and Its Clinical Significance , 2002 .

[30]  C. Song,et al.  Thermal Modelling of Shape-Memory Alloy Fixator for Minimal-Access Surgery , 2002 .

[31]  K. Dai,et al.  An Investigation of theSelective Stress-Shielding Effect of Shape-Memory Sawtooth-arm Embracing Fixator , 2002 .

[32]  Yi Liu,et al.  Surgical Treatment of Tibial and Femoral Fractures with TiNi Shape-Memory Alloy Interlocking Intramedullary Nails , 2002 .

[33]  E. Denkhaus,et al.  Nickel essentiality, toxicity, and carcinogenicity. , 2002, Critical reviews in oncology/hematology.

[34]  Mitsuo Niinomi,et al.  Recent metallic materials for biomedical applications , 2002 .

[35]  E. Abel,et al.  A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. , 2001, Journal of biomechanics.

[36]  A. Dobromyslov,et al.  Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods , 2001 .

[37]  J. Disegi Titanium alloys for fracture fixation implants. , 2000, Injury.

[38]  Y. L. Chen,et al.  The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. , 2000, Journal of biomedical materials research.

[39]  H. Rack,et al.  Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys , 2000 .

[40]  Ming Zhu,et al.  Medical Application of NiTi Shape Memory Alloy in China , 2000 .

[41]  A. Pelton,et al.  Medical Uses of Nitinol , 2000 .

[42]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[43]  J. Wataha,et al.  Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro. , 1999, Journal of biomedical materials research.

[44]  G. Lütjering,et al.  Property optimization through microstructural control in titanium and aluminum alloys , 1999 .

[45]  S. Semiatin,et al.  Evolution of microstructure, macrotexture and microtexture during hot rolling of Ti-6A1-4V , 1998 .

[46]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[47]  F. Guilak,et al.  The effect of hip stem material modulus on surface strain in human femora. , 1998, Journal of biomechanics.

[48]  C. Rey,et al.  XPS and IR study of dicalcium phosphate dihydrate nucleation on titanium surfaces , 1998 .

[49]  Mitsuo Niinomi,et al.  Mechanical properties of biomedical titanium alloys , 1998 .

[50]  Y. V. R. K. Prasad,et al.  Processing maps for hot working of titanium alloys , 1998 .

[51]  M. Niinomi,et al.  Design and mechanical properties of new β type titanium alloys for implant materials , 1998 .

[52]  A. Yamamoto,et al.  Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. , 1998, Journal of biomedical materials research.

[53]  K. Madangopal The self accommodating martensitic microstructure of NiTi shape memory alloys , 1997 .

[54]  J. Humbeeck,et al.  Generation of Recovery Stresses : Thermodynamic Modelling and Experimental Verification , 1997 .

[55]  A G Veldhuizen,et al.  Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. , 1997, Biomaterials.

[56]  T. Salo,et al.  Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. , 1997, Journal of biomedical materials research.

[57]  Kathy K. Wang The use of titanium for medical applications in the USA , 1996 .

[58]  R. Boyer An overview on the use of titanium in the aerospace industry , 1996 .

[59]  F. Auricchio,et al.  Generalized plasticity and shape-memory alloys , 1996 .

[60]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[61]  K. Endo Chemical modification of metallic implant surfaces with biofunctional proteins (Part 1). Molecular structure and biological activity of a modified NiTi alloy surface. , 1995, Dental materials journal.

[62]  D. Davy,et al.  The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. , 1995, The Journal of bone and joint surgery. American volume.

[63]  E. Nieboer,et al.  Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. , 1994, Environmental health perspectives.

[64]  Thomas J. Pence,et al.  A Thermomechanical Model for a One Variant Shape Memory Material , 1994 .

[65]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[66]  Computer Staff,et al.  Medical systems , 1993 .

[67]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[68]  H. Mckellop,et al.  Cup containment and orientation in cemented total hip arthroplasties. , 1990, The Journal of bone and joint surgery. British volume.

[69]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[70]  A. Hulth,et al.  Current concepts of fracture healing. , 1989, Clinical orthopaedics and related research.

[71]  David C. Larbalestier,et al.  The compctition between the alpha and omega phases in aged Ti-Nb alloys , 1988 .

[72]  C. M. Wayman,et al.  Type II twins in self-accommodating martensite plate variants in a CuZnAl shape memory alloy , 1986 .

[73]  F. H. Froes,et al.  The Beta Titanium Alloys , 1985 .

[74]  M Semlitsch,et al.  Titanium-Aluminium-Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants - Titan-Aluminium-Niob-Legierung, entwickelt für körperverträgliche, hochfeste Implantate in der Chirurgie , 1985, Biomedizinische Technik. Biomedical engineering.

[75]  J. Krumhansl,et al.  Twin Boundaries in Ferroelastic Media without Interface Dislocations , 1984 .

[76]  F. Falk Model free energy, mechanics, and thermodynamics of shape memory alloys , 1980 .

[77]  C. M. Wayman,et al.  Crystallographic similarities in shape memory martensites , 1979 .

[78]  R. Kaplow,et al.  A vena cava filter using thermal shape memory alloy. Experimental aspects. , 1977, Radiology.

[79]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[80]  W. J. Buehler,et al.  A summary of recent research on the nitinol alloys and their potential application in ocean engineering , 1968 .

[81]  Arne. Olander AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS , 1932 .

[82]  Fu-ping Wang,et al.  Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment , 2006 .

[83]  Guo He,et al.  Ti alloy design strategy for biomedical applications , 2006 .

[84]  N. Jaffrezic‐Renault,et al.  Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts , 2005 .

[85]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[86]  S. Shabalovskaya,et al.  Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. , 2002, Bio-medical materials and engineering.

[87]  David M. Grant,et al.  Physical and Chemical Vapor Deposition and Plasma-assisted Techniques for Coating Titanium , 2001 .

[88]  E. Schneider,et al.  Titanium as Implant Material for Osteosynthesis Applications , 2001 .

[89]  Rolando Barbucci,et al.  Biological Performance of Materials , 2000 .

[90]  Richard D. James,et al.  Martensitic transformations and shape-memory materials ☆ , 2000 .

[91]  L. Yahia,et al.  Preliminary investigation of the effects of surface treatments on biological response to shape memory NiTi stents. , 1999, Journal of biomedical materials research.

[92]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[93]  S. Shabalovskaya,et al.  On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. , 1996, Bio-medical materials and engineering.

[94]  K. Hwang,et al.  Micromechanics Constitutive Description of Thermoelastic Martensitic Transformations , 1994 .

[95]  R. Lammering,et al.  Finite Element Analysis of the Behavior of Shape Memory Alloys and their Applications. , 1993 .

[96]  I Lundström,et al.  Physico-chemical considerations of titanium as a biomaterial. , 1992, Clinical materials.

[97]  Gérard A. Maugin,et al.  Existence of solitary waves in martensitic alloys , 1991 .

[98]  Guk-Rwang Won American Society for Testing and Materials , 1987 .

[99]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[100]  H. Flower,et al.  The β ⇄ α transformation in dilute Ti-Mo alloys , 1974 .

[101]  C. M. Wayman,et al.  Introduction to the crystallography of martensitic transformations , 1964 .

[102]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[103]  T. Read,et al.  Plastic Deformation and Diffusionless Phase Changes in Metals — the Gold-Cadmium Beta Phase , 1951 .