First-passage probabilities and invariant distributions of Kac-Ornstein-Uhlenbeck processes

In this paper, we study Ornstein-Uhlenbeck processes with Markov modulation, whose parameters depend on an external underlying two-state Markov process ε. Conditional mean and variance of such processes under given modulation are investigated from the point of view of the first passage probabilities and invariant measures. It is also studied the limiting behaviour under scaling conditions similar to Kac’s scaling. PACS numbers: 05.40.Fb,05.40.Jc,02.50.Ey

[1]  Vicenç Méndez,et al.  Continuous time random walks under Markovian resetting. , 2021, Physical review. E.

[2]  Nikita Ratanov,et al.  Mean-reverting neuronal model based on two alternating patterns , 2020, Biosyst..

[3]  Wei Zhang,et al.  The Stationary Distributions of Two Classes of Reflected Ornstein–Uhlenbeck Processes , 2009, Journal of Applied Probability.

[4]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[5]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[6]  On the Asymmetric Telegraph Processes , 2014, Journal of Applied Probability.

[7]  Vladas Sidoravicius,et al.  Stochastic Processes and Applications , 2007 .

[8]  M. Jacobsen Laplace and the origin of the Ornstein-Uhlenbeck process , 1996 .

[9]  G. Pavliotis Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .

[10]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[11]  G. Weiss,et al.  First passage times for a generalized telegrapher's equation , 1992 .

[12]  W. Coffey,et al.  The Langevin equation : with applications to stochastic problems in physics, chemistry, and electrical engineering , 2012 .

[13]  L. Ricciardi,et al.  The Ornstein-Uhlenbeck process as a model for neuronal activity , 1979, Biological Cybernetics.

[14]  Antonio Di Crescenzo,et al.  Piecewise deterministic processes following two alternating patterns , 2019, Journal of Applied Probability.

[15]  H. Larralde First-passage probabilities and mean number of sites visited by a persistent random walker in one- and two-dimensional lattices. , 2020, Physical review. E.

[16]  Foong,et al.  First-passage time, maximum displacement, and Kac's solution of the telegrapher equation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  Alexander D. Kolesnik,et al.  Telegraph Processes and Option Pricing , 2013 .

[18]  P. Broadbridge,et al.  Random Spherical Hyperbolic Diffusion , 2019, Journal of Statistical Physics.

[19]  C. Kluppelberg,et al.  Fractional L\'{e}vy-driven Ornstein--Uhlenbeck processes and stochastic differential equations , 2011, 1102.1830.

[20]  R. Mazo On the theory of brownian motion , 1973 .

[21]  A. Breton,et al.  Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process , 2002 .

[22]  G. Weiss First passage time problems for one-dimensional random walks , 1981 .

[23]  A. Buonocore,et al.  Closed-form solutions for the first-passage-time problem and neuronal modeling , 2015 .

[24]  M. Kac A stochastic model related to the telegrapher's equation , 1974 .

[25]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[26]  George H. Weiss,et al.  Some applications of persistent random walks and the telegrapher's equation , 2002 .

[27]  Peter C. Kiessler,et al.  Statistical Inference for Ergodic Diffusion Processes , 2006 .

[28]  S. K. Foong,et al.  Properties of the telegrapher's random process with or without a trap , 1994 .

[29]  J. Douglas Aspects and applications of the random walk , 1995 .

[30]  H. M. Jansen,et al.  Markov-modulated Ornstein–Uhlenbeck processes , 2014, Advances in Applied Probability.

[31]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[32]  Nikita Ratanov,et al.  Kac’s rescaling for jump-telegraph processes , 2012 .

[33]  R. Maller,et al.  Ornstein–Uhlenbeck Processes and Extensions , 2009 .

[34]  N. Ratanov Ornstein-Uhlenbeck Processes of Bounded Variation , 2020, Methodology and Computing in Applied Probability.

[35]  Leon M. Hall,et al.  Special Functions , 1998 .

[36]  Nikita Ratanov,et al.  A jump telegraph model for option pricing , 2004 .

[37]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .