LiDAL: Inter-frame Uncertainty Based Active Learning for 3D LiDAR Semantic Segmentation

[1]  Qingyong Hu,et al.  Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level Supervision , 2022, ArXiv.

[2]  Ales Leonardis,et al.  SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels , 2021, ECCV.

[3]  Jiwen Lu,et al.  SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation , 2020, IEEE Transactions on Image Processing.

[4]  Cem Keskin,et al.  Active Learning with Pseudo-Labels for Multi-View 3D Pose Estimation , 2021, ArXiv.

[5]  Song-Chun Zhu,et al.  Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Chiew-Lan Tai,et al.  Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation of Indoor Scenes. , 2021, IEEE transactions on pattern analysis and machine intelligence.

[7]  Winston H. Hsu,et al.  ReDAL: Region-based and Diversity-aware Active Learning for Point Cloud Semantic Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Guosheng Lin,et al.  Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds , 2021, ArXiv.

[9]  José Marcato Junior,et al.  Adversarial unsupervised domain adaptation for 3D semantic segmentation with multi-modal learning , 2021 .

[10]  Tao Mei,et al.  Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud , 2021, AAAI.

[11]  Alexander G. Schwing,et al.  3D Spatial Recognition without Spatially Labeled 3D , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Le Hui,et al.  SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network , 2021, AAAI.

[13]  Xiaojuan Qi,et al.  One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Ke Chen,et al.  Label-Efficient Point Cloud Semantic Segmentation: An Active Learning Approach , 2021, ArXiv.

[15]  Rohit Girdhar,et al.  Self-Supervised Pretraining of 3D Features on any Point-Cloud , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[16]  Saining Xie,et al.  Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Xinge Zhu,et al.  Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Matt J. Kusner,et al.  Unsupervised Point Cloud Pre-training via Occlusion Completion , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[19]  Thomas Funkhouser,et al.  Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Kurt Keutzer,et al.  Image2Point: 3D Point-Cloud Understanding with Pretrained 2D ConvNets , 2021, ArXiv.

[21]  Thomas Funkhouser,et al.  P4Contrast: Contrastive Learning with Pairs of Point-Pixel Pairs for RGB-D Scene Understanding , 2020, ArXiv.

[22]  Geoffrey E. Hinton,et al.  Canonical Capsules: Unsupervised Capsules in Canonical Pose , 2020, ArXiv.

[23]  Michael Ying Yang,et al.  Active and incremental learning for semantic ALS point cloud segmentation , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[24]  C. Stachniss,et al.  Domain Transfer for Semantic Segmentation of LiDAR Data using Deep Neural Networks , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[25]  Haohan Li,et al.  Attention, Suggestion and Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation , 2020, MICCAI.

[26]  Manohar Kaul,et al.  Self-Supervised Few-Shot Learning on Point Clouds , 2020, NeurIPS.

[27]  G. Vosselman,et al.  EFFICIENT TRAINING OF SEMANTIC POINT CLOUD SEGMENTATION VIA ACTIVE LEARNING , 2020, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[28]  Song Han,et al.  Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution , 2020, ECCV.

[29]  Leonidas J. Guibas,et al.  PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding , 2020, ECCV.

[30]  Hongbo Fu,et al.  JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds , 2020, ECCV.

[31]  Gim Hee Lee,et al.  Weakly Supervised Semantic Point Cloud Segmentation: Towards 10× Fewer Labels , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Guosheng Lin,et al.  Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Julien P. C. Valentin,et al.  ViewAL: Active Learning With Viewpoint Entropy for Semantic Segmentation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  A. Markham,et al.  RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Qiang Xu,et al.  nuScenes: A Multimodal Dataset for Autonomous Driving , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Kaveh Hassani,et al.  Unsupervised Multi-Task Feature Learning on Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[37]  Shingo Ando,et al.  Semantic Segmentation of Sparsely Annotated 3D Point Clouds by Pseudo-Labelling , 2019, 2019 International Conference on 3D Vision (3DV).

[38]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Cyrill Stachniss,et al.  SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[41]  Bernard Ghanem,et al.  MortonNet: Self-Supervised Learning of Local Features in 3D Point Clouds , 2019, ArXiv.

[42]  Jonathan Sauder,et al.  Self-Supervised Deep Learning on Point Clouds by Reconstructing Space , 2019, NeurIPS.

[43]  Kurt Keutzer,et al.  SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[44]  Liang Yang,et al.  Towards Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point Clouds of Wild Scenes , 2019, BMVC.

[45]  Carsten Rother,et al.  CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation , 2018, BMVC.

[46]  Chenglu Wen,et al.  Semantic Labeling of Mobile LiDAR Point Clouds via Active Learning and Higher Order MRF , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Silvio Savarese,et al.  Active Learning for Convolutional Neural Networks: A Core-Set Approach , 2017, ICLR.

[48]  Xavier Giró-i-Nieto,et al.  Cost-Effective Active Learning for Melanoma Segmentation , 2017, NIPS 2017.

[49]  Ruimao Zhang,et al.  Cost-Effective Active Learning for Deep Image Classification , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[50]  Tian Xia,et al.  Vehicle Detection from 3D Lidar Using Fully Convolutional Network , 2016, Robotics: Science and Systems.

[51]  Joachim M. Buhmann,et al.  Active learning for semantic segmentation with expected change , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Nikolaos Papanikolopoulos,et al.  Multi-class active learning for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Mark Craven,et al.  An Analysis of Active Learning Strategies for Sequence Labeling Tasks , 2008, EMNLP.

[54]  Dan Roth,et al.  Margin-Based Active Learning for Structured Output Spaces , 2006, ECML.

[55]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[56]  Rebecca Hwa,et al.  Sample Selection for Statistical Parsing , 2004, CL.

[57]  Peter J. Bickel,et al.  The Earth Mover's distance is the Mallows distance: some insights from statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[58]  Ayhan Demiriz,et al.  Constrained K-Means Clustering , 2000 .

[59]  Petros Maragos,et al.  Optimum design of chamfer distance transforms , 1998, IEEE Trans. Image Process..