"Use of 3D Point Clouds in Geohazards" Special Issue: Current Challenges and Future Trends

The fast proliferation of new satellite, aerial and terrestrial remote sensing techniques has undoubtedly provided new technological and scientific opportunities to society during the last few decades. [...]

[1]  H. Kessler,et al.  Reconstructing flood basalt lava flows in three dimensions using terrestrial laser scanning , 2011 .

[2]  Tom Edwards,et al.  A 4D Filtering and Calibration Technique for Small-Scale Point Cloud Change Detection with a Terrestrial Laser Scanner , 2015, Remote. Sens..

[3]  Marj Tonini,et al.  Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R , 2014, J. Spatial Inf. Sci..

[4]  Michel Jaboyedoff,et al.  Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event , 2009 .

[5]  J. Corominas,et al.  Magnitude–frequency relation for rockfall scars using a Terrestrial Laser Scanner , 2012 .

[6]  Gaetana Ganci,et al.  Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography , 2015, Remote. Sens..

[7]  Samuel T. Thiele,et al.  Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology , 2014 .

[8]  Mark W. Smith,et al.  Structure from motion photogrammetry in physical geography , 2016 .

[9]  D. Petley,et al.  Combined Digital Photogrammetry and Time‐of‐Flight Laser Scanning for Monitoring Cliff Evolution , 2005 .

[10]  Ramon Arrowsmith,et al.  Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula) , 2015, Remote. Sens..

[11]  D. Jean Hutchinson,et al.  Rock Slopes Asset Management: Selecting the Optimal Three-Dimensional Remote Sensing Technology , 2015 .

[12]  José Juan de Sanjosé-Blasco,et al.  Does HDR Pre-Processing Improve the Accuracy of 3D Models Obtained by Means of two Conventional SfM-MVS Software Packages? The Case of the Corral del Veleta Rock Glacier , 2015, Remote. Sens..

[13]  G. Prost,et al.  Remote sensing for geoscientists : image analysis and integration , 2013 .

[14]  D. Lague,et al.  Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z) , 2013, 1302.1183.

[15]  L. Benedetti,et al.  Determining the present-day kinematics of the Idrija fault (Slovenia) from airborne LiDAR topography , 2014 .

[16]  G. Ventura,et al.  Remote sensing of volcanic terrains by terrestrial laser scanner: preliminary reflectance and RGB implications for studying Vesuvius crater (Italy) , 2008 .

[17]  T. Rockwell,et al.  Southern San Andreas Fault Evaluation Field Activity: Approaches to Measuring Small Geomorphic Offsets—Challenges and Recommendations for Active Fault Studies , 2014 .

[18]  Matthew J. Lato,et al.  Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry , 2013, Comput. Geosci..

[19]  Michael J. Olsen,et al.  To Fill or Not to Fill: Sensitivity Analysis of the Influence of Resolution and Hole Filling on Point Cloud Surface Modeling and Individual Rockfall Event Detection , 2015, Remote. Sens..

[20]  D. Petley,et al.  Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion , 2005, Quarterly Journal of Engineering Geology and Hydrogeology.

[21]  Gerald W. Bawden,et al.  Displacement fields from point cloud data: Application of particle imaging velocimetry to landslide geodesy , 2012 .

[22]  S. Robson,et al.  Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application , 2012 .

[23]  I. Trinks,et al.  Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork , 2005, Journal of the Geological Society.

[24]  Arko Lucieer,et al.  Direct Georeferencing of Ultrahigh-Resolution UAV Imagery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[25]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[26]  P. Tarolli,et al.  Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion , 2012, Natural Hazards.

[27]  Michel Jaboyedoff,et al.  Preface "LIDAR and DEM techniques for landslides monitoring and characterization" , 2010 .

[28]  Brian D. Collins,et al.  Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA , 2012 .

[29]  M. Jaboyedoff,et al.  Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR , 2014, Landslides.

[30]  William Thielicke,et al.  PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB , 2014 .

[31]  F. Loddo,et al.  Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano , 2007 .

[32]  C. Oppenheimer,et al.  Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica , 2015 .

[33]  Natan Micheletti,et al.  Investigating the geomorphological potential of freely available and accessible structure‐from‐motion photogrammetry using a smartphone , 2015 .

[34]  T. Fernandez-Steeger,et al.  Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes – an example from Madeira island (Portugal) , 2011 .

[35]  K. Moffett,et al.  Remote Sens , 2015 .

[36]  M. Crosetto,et al.  Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching , 2008 .

[37]  P. Tarolli High-resolution topography for understanding Earth surface processes: Opportunities and challenges , 2014 .

[38]  Danilo Schneider,et al.  Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis , 2013, Comput. Geosci..

[39]  Michel Jaboyedoff,et al.  Automatic Rockfalls Volume Estimation Based on Terrestrial Laser Scanning Data , 2015 .

[40]  Alexander M. Millkey The Black Swan: The Impact of the Highly Improbable , 2009 .

[41]  K. Hudnut,et al.  LiDAR and Field Observations of Slip Distribution for the Most Recent Surface Ruptures along the Central San Jacinto Fault , 2012 .

[42]  M. Jaboyedoff,et al.  Terrestrial laser scanning of rock slope instabilities , 2014 .

[43]  T. Dewez,et al.  Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France) , 2013 .

[44]  Michel JaboyedoffThierry Use of LIDAR in landslide investigations: a review , 2012 .

[45]  David Hodgetts,et al.  Laser scanning and digital outcrop geology in the petroleum industry: A review , 2013 .

[46]  Julian J. Bommer,et al.  Uncertainty about the uncertainty in seismic hazard analysis , 2003 .