HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION

We present comprehensive analyses of faint dropout galaxies up to z  ∼  10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z  ∼  5–10 in the HFF fields and enlarge the size of the z  ∼  9 galaxy sample obtained to date. Although the number of highly magnified (μ  ∼  10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functions with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as −2 at z  ∼  6–8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρUV, at z  >  8 from the large z  ∼  9 sample. We examine whether the rapid ρUV decrease trend can be reconciled with the large Thomson scattering optical depth, τe, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρUV decrease and the large τe. It is possible that the ρUV decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.

[1]  R. Massey,et al.  Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using ∼180 multiple images , 2014, 1409.8663.

[2]  Matthias Steinmetz,et al.  The imprint of reionization on the star formation histories of dwarf galaxies , 2014, 1405.5540.

[3]  D. Coe,et al.  FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS , 2014, 1405.0011.

[4]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[5]  J. Kneib,et al.  Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies , 2014 .

[6]  J. Dunlop,et al.  ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS , 2014, 1410.0962.

[7]  R. Bouwens,et al.  FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.

[8]  J. Kneib,et al.  NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.

[9]  J. Diego,et al.  A GEOMETRICALLY SUPPORTED z ∼ 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1407.3769.

[10]  J. Diego,et al.  A RIGOROUS FREE-FORM LENS MODEL OF A2744 TO MEET THE HUBBLE FRONTIER FIELDS CHALLENGE , 2014, 1406.2702.

[11]  J. Holtzman,et al.  THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. II. SEARCHING FOR SIGNATURES OF REIONIZATION , 2014, 1405.3281.

[12]  I. Trujillo,et al.  INTRACLUSTER LIGHT AT THE FRONTIER: A2744 , 2014, 1405.2070.

[13]  M. Boylan-Kolchin,et al.  Near-field limits on the role of faint galaxies in cosmic reionization , 2014, 1405.1040.

[14]  D. Coe,et al.  LENS MODELS AND MAGNIFICATION MAPS OF THE SIX HUBBLE FRONTIER FIELDS CLUSTERS , 2014, 1405.0222.

[15]  M. V. Fernandes,et al.  Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S , 2014, 1405.0488.

[16]  Masanori Iye,et al.  ACCELERATED EVOLUTION OF THE Lyα LUMINOSITY FUNCTION AT z ≳ 7 REVEALED BY THE SUBARU ULTRA-DEEP SURVEY FOR Lyα EMITTERS AT z = 7.3 , 2014, 1404.6066.

[17]  N. Konidaris,et al.  LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.

[18]  M. Giavalisco,et al.  NEW OBSERVATIONS OF z ∼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION , 2014, 1403.5466.

[19]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[20]  J. Diego,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. I. A2744 , 2014, 1402.6743.

[21]  F. Boone,et al.  The first Frontier Fields cluster: 4.5 μm excess in a z ~ 8 galaxy candidate in Abell 2744 , 2014, 1401.8263.

[22]  O. Fèvre,et al.  The bright end of the galaxy luminosity function at z≃7: before the onset of mass quenching? , 2013, 1312.5643.

[23]  Takashi Hattori,et al.  Probing intergalactic neutral hydrogen by the Lyman alpha red damping wing of gamma-ray burst 130606A afterglow spectrum at z = 5.913 , 2013, 1312.3934.

[24]  J. Kneib,et al.  PROBING THE z > 6 UNIVERSE WITH THE FIRST HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2013, 1311.7670.

[25]  M. Donahue,et al.  CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT z ∼ 6–8 , 2013, 1308.1692.

[26]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[27]  O. Lahav,et al.  A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.

[28]  M. Giavalisco,et al.  A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.

[29]  Massimo Stiavelli,et al.  THE CHANGING Lyα OPTICAL DEPTH IN THE RANGE 6 < z < 9 FROM THE MOSFIRE SPECTROSCOPY OF Y-DROPOUTS , 2013 .

[30]  T. Fragos,et al.  ENERGY FEEDBACK FROM X-RAY BINARIES IN THE EARLY UNIVERSE , 2013, 1306.1405.

[31]  R. Bouwens,et al.  PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.

[32]  K. Nagamine,et al.  IMPACT OF H2-BASED STAR FORMATION MODEL ON THE z ⩾ 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION , 2013, 1301.5270.

[33]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[34]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[35]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[36]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[37]  J. Dunlop,et al.  THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.

[38]  Michele Cirasuolo,et al.  EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.

[39]  A. Mesinger,et al.  Signatures of X-rays in the early Universe , 2012, 1210.7319.

[40]  M. Lueker,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.

[41]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[42]  R. Bouwens,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.

[43]  M. Kuhlen,et al.  Concordance models of reionization: implications for faint galaxies and escape fraction evolution , 2012, 1201.0757.

[44]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.

[45]  Hooshang Nayyeri,et al.  SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES , 2011, 1107.3159.

[46]  R. Ellis,et al.  KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8 , 2011, 1107.1261.

[47]  P. Hewett,et al.  How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar ULAS J1120+0641? , 2011, 1106.6089.

[48]  S. Okamura,et al.  COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH , 2011, 1104.2330.

[49]  Chung-Pei Ma,et al.  The baryonic assembly of dark matter haloes , 2011, 1103.0001.

[50]  A. Mesinger,et al.  The detectability of Lyα emission from galaxies during the epoch of reionization , 2011, 1101.5160.

[51]  Xiaohui Fan,et al.  The first (nearly) model-independent constraint on the neutral hydrogen fraction at z ∼ 5–6 , 2011, 1101.3314.

[52]  W. Couch,et al.  THE DISSECTION OF ABELL 2744: A RICH CLUSTER GROWING THROUGH MAJOR AND MINOR MERGERS , 2010, 1012.1315.

[53]  S. Okamura,et al.  COMPLETING THE CENSUS OF Ly alpha EMITTERS AT THE REIONIZATION EPOCH , 2011 .

[54]  A. Fontana,et al.  SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION , 2011, 1107.1376.

[55]  R. Ellis,et al.  Early star-forming galaxies and the reionization of the Universe , 2010, Nature.

[56]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[57]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[58]  M. Oguri The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.

[59]  F. Walter,et al.  IONIZATION NEAR ZONES ASSOCIATED WITH QUASARS AT z ∼ 6 , 2010, 1003.0016.

[60]  A. Mesinger Was reionization complete by z∼ 5–6? , 2009, 0910.4161.

[61]  M. Franx,et al.  STRUCTURE AND MORPHOLOGIES OF z ∼ 7–8 GALAXIES FROM ULTRA-DEEP WFC3/IR IMAGING OF THE HUBBLE ULTRA-DEEP FIELD , 2009, 0909.5183.

[62]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[63]  Matias Zaldarriaga,et al.  Probing the neutral fraction of the IGM with GRBs during the epoch of reionization , 2007, 0710.1018.

[64]  H. F. Erguson,et al.  THE MORPHOLOGICAL DIVERSITIES AMONG STAR-FORMING GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY , 2008 .

[65]  S. Furlanetto,et al.  Lyα emitters during the early stages of reionization , 2007, 0708.0006.

[66]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[67]  Takashi Hattori,et al.  Reionization and Galaxy Evolution Probed by z = 7 Lyα Emitters , 2007, 0707.1561.

[68]  M. Zaldarriaga,et al.  Studying reionization with Lyα emitters , 2007, 0704.2239.

[69]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[70]  S. Okamura,et al.  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field , 2006, astro-ph/0604149.

[71]  Xiaohui Fan,et al.  Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.

[72]  Kentaro Aoki,et al.  Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3 , 2005, astro-ph/0512154.

[73]  M. Rees,et al.  Early Reionization by Miniquasars , 2003, astro-ph/0310223.

[74]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[75]  S. Okamura,et al.  Luminosity Functions of 10 Nearby Clusters of Galaxies. I. Data , 2002 .

[76]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[77]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[78]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[79]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[80]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[81]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[82]  R. J. Hanisch,et al.  Astronomical Data Analysis Software and Systems X , 2014 .

[83]  C. Kochanek The implications of lenses for galaxy structure , 1991 .

[84]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[85]  W. Jaffe A SIMPLE-MODEL FOR THE DISTRIBUTION OF LIGHT IN SPHERICAL GALAXIES , 1983 .

[86]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .