HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION
暂无分享,去创建一个
M. Oguri | K. Shimasaku | M. Ouchi | Y. Ono | R. Kawamata | M. Ishigaki
[1] R. Massey,et al. Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using ∼180 multiple images , 2014, 1409.8663.
[2] Matthias Steinmetz,et al. The imprint of reionization on the star formation histories of dwarf galaxies , 2014, 1405.5540.
[3] D. Coe,et al. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS , 2014, 1405.0011.
[4] Nimish Hathi,et al. THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.
[5] J. Kneib,et al. Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies , 2014 .
[6] J. Dunlop,et al. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS , 2014, 1410.0962.
[7] R. Bouwens,et al. FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.
[8] J. Kneib,et al. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.
[9] J. Diego,et al. A GEOMETRICALLY SUPPORTED z ∼ 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1407.3769.
[10] J. Diego,et al. A RIGOROUS FREE-FORM LENS MODEL OF A2744 TO MEET THE HUBBLE FRONTIER FIELDS CHALLENGE , 2014, 1406.2702.
[11] J. Holtzman,et al. THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. II. SEARCHING FOR SIGNATURES OF REIONIZATION , 2014, 1405.3281.
[12] I. Trujillo,et al. INTRACLUSTER LIGHT AT THE FRONTIER: A2744 , 2014, 1405.2070.
[13] M. Boylan-Kolchin,et al. Near-field limits on the role of faint galaxies in cosmic reionization , 2014, 1405.1040.
[14] D. Coe,et al. LENS MODELS AND MAGNIFICATION MAPS OF THE SIX HUBBLE FRONTIER FIELDS CLUSTERS , 2014, 1405.0222.
[15] M. V. Fernandes,et al. Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S , 2014, 1405.0488.
[16] Masanori Iye,et al. ACCELERATED EVOLUTION OF THE Lyα LUMINOSITY FUNCTION AT z ≳ 7 REVEALED BY THE SUBARU ULTRA-DEEP SURVEY FOR Lyα EMITTERS AT z = 7.3 , 2014, 1404.6066.
[17] N. Konidaris,et al. LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.
[18] M. Giavalisco,et al. NEW OBSERVATIONS OF z ∼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION , 2014, 1403.5466.
[19] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[20] J. Diego,et al. YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. I. A2744 , 2014, 1402.6743.
[21] F. Boone,et al. The first Frontier Fields cluster: 4.5 μm excess in a z ~ 8 galaxy candidate in Abell 2744 , 2014, 1401.8263.
[22] O. Fèvre,et al. The bright end of the galaxy luminosity function at z≃7: before the onset of mass quenching? , 2013, 1312.5643.
[23] Takashi Hattori,et al. Probing intergalactic neutral hydrogen by the Lyman alpha red damping wing of gamma-ray burst 130606A afterglow spectrum at z = 5.913 , 2013, 1312.3934.
[24] J. Kneib,et al. PROBING THE z > 6 UNIVERSE WITH THE FIRST HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2013, 1311.7670.
[25] M. Donahue,et al. CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT z ∼ 6–8 , 2013, 1308.1692.
[26] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[27] O. Lahav,et al. A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.
[28] M. Giavalisco,et al. A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.
[29] Massimo Stiavelli,et al. THE CHANGING Lyα OPTICAL DEPTH IN THE RANGE 6 < z < 9 FROM THE MOSFIRE SPECTROSCOPY OF Y-DROPOUTS , 2013 .
[30] T. Fragos,et al. ENERGY FEEDBACK FROM X-RAY BINARIES IN THE EARLY UNIVERSE , 2013, 1306.1405.
[31] R. Bouwens,et al. PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.
[32] K. Nagamine,et al. IMPACT OF H2-BASED STAR FORMATION MODEL ON THE z ⩾ 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION , 2013, 1301.5270.
[33] J. Dunlop,et al. NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.
[34] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[35] R. Ellis,et al. A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.
[36] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[37] J. Dunlop,et al. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.
[38] Michele Cirasuolo,et al. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.
[39] A. Mesinger,et al. Signatures of X-rays in the early Universe , 2012, 1210.7319.
[40] M. Lueker,et al. A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.
[41] Michele Cirasuolo,et al. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.
[42] R. Bouwens,et al. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.
[43] M. Kuhlen,et al. Concordance models of reionization: implications for faint galaxies and escape fraction evolution , 2012, 1201.0757.
[44] M. Lueker,et al. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.
[45] Hooshang Nayyeri,et al. SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES , 2011, 1107.3159.
[46] R. Ellis,et al. KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8 , 2011, 1107.1261.
[47] P. Hewett,et al. How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar ULAS J1120+0641? , 2011, 1106.6089.
[48] S. Okamura,et al. COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH , 2011, 1104.2330.
[49] Chung-Pei Ma,et al. The baryonic assembly of dark matter haloes , 2011, 1103.0001.
[50] A. Mesinger,et al. The detectability of Lyα emission from galaxies during the epoch of reionization , 2011, 1101.5160.
[51] Xiaohui Fan,et al. The first (nearly) model-independent constraint on the neutral hydrogen fraction at z ∼ 5–6 , 2011, 1101.3314.
[52] W. Couch,et al. THE DISSECTION OF ABELL 2744: A RICH CLUSTER GROWING THROUGH MAJOR AND MINOR MERGERS , 2010, 1012.1315.
[53] S. Okamura,et al. COMPLETING THE CENSUS OF Ly alpha EMITTERS AT THE REIONIZATION EPOCH , 2011 .
[54] A. Fontana,et al. SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION , 2011, 1107.1376.
[55] R. Ellis,et al. Early star-forming galaxies and the reionization of the Universe , 2010, Nature.
[56] S. Okamura,et al. STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.
[57] M. Franx,et al. ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.
[58] M. Oguri. The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.
[59] F. Walter,et al. IONIZATION NEAR ZONES ASSOCIATED WITH QUASARS AT z ∼ 6 , 2010, 1003.0016.
[60] A. Mesinger. Was reionization complete by z∼ 5–6? , 2009, 0910.4161.
[61] M. Franx,et al. STRUCTURE AND MORPHOLOGIES OF z ∼ 7–8 GALAXIES FROM ULTRA-DEEP WFC3/IR IMAGING OF THE HUBBLE ULTRA-DEEP FIELD , 2009, 0909.5183.
[62] S. M. Fall,et al. LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.
[63] Matias Zaldarriaga,et al. Probing the neutral fraction of the IGM with GRBs during the epoch of reionization , 2007, 0710.1018.
[64] H. F. Erguson,et al. THE MORPHOLOGICAL DIVERSITIES AMONG STAR-FORMING GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY , 2008 .
[65] S. Furlanetto,et al. Lyα emitters during the early stages of reionization , 2007, 0708.0006.
[66] R. Bouwens,et al. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.
[67] Takashi Hattori,et al. Reionization and Galaxy Evolution Probed by z = 7 Lyα Emitters , 2007, 0707.1561.
[68] M. Zaldarriaga,et al. Studying reionization with Lyα emitters , 2007, 0704.2239.
[69] S. M. Fall,et al. The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.
[70] S. Okamura,et al. The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field , 2006, astro-ph/0604149.
[71] Xiaohui Fan,et al. Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.
[72] Kentaro Aoki,et al. Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3 , 2005, astro-ph/0512154.
[73] M. Rees,et al. Early Reionization by Miniquasars , 2003, astro-ph/0310223.
[74] S. Okamura,et al. Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.
[75] S. Okamura,et al. Luminosity Functions of 10 Nearby Clusters of Galaxies. I. Data , 2002 .
[76] Timothy M. Heckman,et al. Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.
[77] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[78] L. Pozzetti,et al. The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.
[79] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[80] A. Fruchter,et al. HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.
[81] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[82] R. J. Hanisch,et al. Astronomical Data Analysis Software and Systems X , 2014 .
[83] C. Kochanek. The implications of lenses for galaxy structure , 1991 .
[84] Doug Tody,et al. The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.
[85] W. Jaffe. A SIMPLE-MODEL FOR THE DISTRIBUTION OF LIGHT IN SPHERICAL GALAXIES , 1983 .
[86] R. Kron. Photometry of a complete sample of faint galaxies. , 1980 .