An algorithm for computing the compressive strength of heterogeneous cohesive-frictional materials – Application to cement paste

Abstract An algorithm based on a finite element discretization of the lower bound yield theorem is applied to digital images, which allows the determination of the compressive strength of highly heterogeneous materials following a Drucker–Prager (or Mohr–Coulomb) yield criterion. The resulting optimization problem is usually very large and sparse and is solved using recent nonlinear optimizers based on the interior point method. The algorithm is validated for a laminated composite material, for which an analytical solution is available; and then applied to 2D slices of 3D digital microstructural models of cement paste. It is shown that the algorithm converges with mesh refinement towards experimental results.

[1]  J. Gondzio,et al.  Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization , 1999 .

[2]  Franz-Josef Ulm,et al.  Effect of Inclusions on Friction Coefficient of Highly Filled Composite Materials , 2002 .

[3]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[4]  A. Zaoui Continuum Micromechanics: Survey , 2002 .

[5]  F. Ulm,et al.  The effect of interfacial properties on the cohesion of highly filled composite materials , 2005 .

[6]  F. Ulm,et al.  The nanogranular nature of C–S–H , 2007 .

[7]  F. Ulm,et al.  The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling , 2004 .

[8]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[9]  J. Pastor,et al.  Finite element method and limit analysis theory for soil mechanics problems , 1980 .

[10]  Stephen A. Langer,et al.  OOF: an image-based finite-element analysis of material microstructures , 2001, Comput. Sci. Eng..

[11]  R. Fletcher Practical Methods of Optimization , 1988 .

[12]  E. Garboczi,et al.  Finite Element and Finite Difference Programs for Computing the Linear Electric and Elastic Properties of Digital Images of Random Materials | NIST , 1998 .

[13]  Scott W. Sloan,et al.  Lower bound limit analysis using non‐linear programming , 2002 .

[14]  F. Ulm,et al.  On the use of nanoindentation for cementitious materials , 2003 .

[15]  E. Garboczi,et al.  User manual for finite element and finite difference programs:: a parallel version of NIST IR 6269 , 2003 .

[16]  S. Sloan,et al.  A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion , 1995 .

[17]  L. Dormieux,et al.  A micromechanical approach to the strength criterion of Drucker‐Prager materials reinforced by rigid inclusions , 2004 .

[18]  Edward J. Garboczi,et al.  A Hard Core/Soft Shell Microstructural Model for Studying Percolation and Transport in Three-Dimensional Composite Media | NIST , 1999 .

[19]  Scott W. Sloan,et al.  Lower bound limit analysis using finite elements and linear programming , 1988 .

[20]  Denis Damidot,et al.  Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker , 2001 .

[21]  Zdeněk P. Bažant,et al.  Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials : proceedings of the sixth international conference CONCREEP-6@MIT, 20-22 August 2001, Cambridge(MA), USA , 2001 .

[22]  P. de Buhan,et al.  A homogenization approach to the yield strength of composite materials , 1991 .

[23]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[24]  Jean-Baptiste Leblond,et al.  Recent extensions of Gurson's model for porous ductile metals , 1997 .

[25]  E. Garboczi,et al.  User Manual for Finite Element and Finite Difference Programs: A Parallel Version of NISTIR 6269 and NISTIR 6997 | NIST , 2003 .

[26]  Francois P. Ganneau,et al.  From nanohardness to strength properties of cohesive-frictional materials : application to shale materials , 2004 .

[27]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[28]  J. Gondzio HOPDM (version 2.12) — A fast LP solver based on a primal-dual interior point method , 1995 .

[29]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[30]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[31]  Franz-Josef Ulm,et al.  Residual design strength of cement-based materials for nuclear waste storage systems , 2002 .

[32]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[33]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[34]  Edward J. Garboczi,et al.  Elastic Properties of Model Porous Ceramics , 2000, cond-mat/0006334.

[35]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[36]  Edward J. Garboczi,et al.  An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .

[37]  E. Garboczi,et al.  Percolation and pore structure in mortars and concrete , 1994 .

[38]  G. Milton The Theory of Composites , 2002 .

[39]  Jean Salençon,et al.  Calcul à la rupture et analyse limite , 1983 .