Heat Dissipation in Nanocomputing: Lower Bounds From Physical Information Theory

Computing circuits that irreversibly discard information unavoidably dissipate heat. Dissipative costs resulting from information loss, while insignificant in CMOS technology, may be dominant or even prohibitive in some dense, high-speed post-CMOS nanocomputing circuits that employ logically irreversible operations. In transistor-based paradigms, dissipation costs associated with logical irreversibility may be supplemented by additional unavoidable costs associated with particle supply required to maintain the computational “working substance.” These considerations motivate determination of fundamental lower bounds on the dissipative cost of computation that can be applied to concrete nanocomputing technology proposals. In this paper, we present a methodology for the determination of such bounds and illustrate its application to half-adder circuits implemented in the quantum cellular automata and nano-wire-based nano-application specific-integrated circuit paradigms. The resulting bounds reflect fundamental costs inherent in the underlying computational strategies employed by these circuits. Prospective use of this methodology as an assessment tool for post-CMOS nanocomputing technology proposals is discussed.

[1]  Craig S. Lent,et al.  Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata , 2010 .

[2]  Csaba Andras Moritz,et al.  N3ASICs: Designing nanofabrics with fine-grained CMOS integration , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[3]  Ralph K. Cavin,et al.  Scaling beyond CMOS: Turing-Heisenberg Rapprochement , 2010 .

[4]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[5]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[6]  Natesh Ganesh,et al.  Toward nanoprocessor thermodynamics , 2012 .

[7]  Massimo Macucci,et al.  Quantum Cellular Automata , 2006 .

[8]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[9]  Teng Wang,et al.  CMOS Control Enabled Single-Type FET NASIC , 2008, 2008 IEEE Computer Society Annual Symposium on VLSI.

[10]  Neal G. Anderson,et al.  Overwriting information: Correlations, physical costs, and environment models , 2012 .

[11]  Neal G. Anderson,et al.  Heat dissipation bounds for nanocomputing: Theory and application to QCA , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[14]  Neal G. Anderson,et al.  On the physical implementation of logical transformations: Generalized L-machines , 2010, Theor. Comput. Sci..

[15]  R. Keyes Physical limits of silicon transistors and circuits , 2005 .

[16]  Neal G. Anderson,et al.  Throughput-dissipation tradeoff in partially reversible nanocomputing: A case study , 2013, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[17]  Loïc Lagadec,et al.  Regular 2D NASIC-based architecture and design space exploration , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[18]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[19]  Ismo Hänninen,et al.  Irreversibility induced density limits and logical reversiblity in nanocircuits , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[20]  Mostafizur Rahman,et al.  Determining fundamental heat dissipation bounds for transistor-based nanocomputing paradigms , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[21]  Neal G. Anderson,et al.  Modular Dissipation Analysis for QCA , 2014, Field-Coupled Nanocomputing.

[22]  Israel Koren,et al.  Nanoscale Application Specific Integrated Circuits , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.