Effect of Oxygen Diffusion Constraints on the Performance of Planar Solid Oxide Fuel Cells for Variable Oxygen Concentration

Performance enhancement of solid oxide fuel cell (SOFC) has been a very prominent research problem of the present era. One of the key performance-limiting factors is diffusional constraint encounte...

[1]  J. Mauro Multicomponent Diffusion , 2021, Materials Kinetics.

[2]  Zongping Shao,et al.  Statistical method‐based calibration and validation of a solid oxide fuel cell model , 2019 .

[3]  H. Nabielek,et al.  Solid Oxide Fuel Cell Development at Forschungszentrum Juelich , 2007, ECS Transactions.

[4]  P. Das,et al.  Performance evaluation of different bipolar plate designs of 3D planar anode-supported SOFCs , 2018, International Journal of Heat and Mass Transfer.

[5]  Yanhai Du,et al.  Pyrolyzable pore-formers for the porous-electrode formation in solid oxide fuel cells: A review , 2017 .

[6]  Hazlie Mokhlis,et al.  Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey , 2017 .

[7]  F. Jabbari,et al.  Investigation of thermal control for different SOFC flow geometries , 2016 .

[8]  Moses O. Tadé,et al.  Planar Solid Oxide Fuel Cell Modeling and Optimization Targeting the Stack’s Temperature Gradient Minimization , 2016 .

[9]  Mahmut D. Mat,et al.  A review on cell/stack designs for high performance solid oxide fuel cells , 2016 .

[10]  Đani Juričić,et al.  A comprehensive 3-D modeling of a single planar solid oxide fuel cell , 2016 .

[11]  Sanjay,et al.  Computational analysis of IR-SOFC: Thermodynamic, electrochemical process and flow configuration dependency , 2016 .

[12]  Linda Barelli,et al.  Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition , 2015 .

[13]  A. Banerjee,et al.  Progress in material selection for solid oxide fuel cell technology: A review , 2015 .

[14]  B. Sundén,et al.  Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics , 2014 .

[15]  B. Sundén,et al.  SOFC Cell Design Optimization Using the Finite Element Method Based CFD Approach , 2014 .

[16]  H. Chandra,et al.  Application of solid oxide fuel cell technology for power generation—A review , 2013 .

[17]  Naiqing Zhang,et al.  Preparation of dual-pore anode supported Sc2O3-stabilized-ZrO2 electrolyte planar solid oxide fuel cell by phase-inversion and dip-coating , 2012 .

[18]  Bengt Sundén,et al.  SOFC modeling considering electrochemical reactions at the active three phase boundaries , 2012 .

[19]  Ioannis K. Kookos,et al.  Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells , 2012 .

[20]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[21]  I. Kevrekidis,et al.  Oxygen mass transport limitations at the cathode of polymer electrolyte membrane fuel cells , 2011 .

[22]  B. Sundén,et al.  CFD Modeling: Different Kinetic Approaches for Internal Reforming Reactions in an Anode-Supported SOFC , 2011 .

[23]  M. Soroush,et al.  Mathematical modeling of solid oxide fuel cells: A review , 2011 .

[24]  Amornchai Arpornwichanop,et al.  Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte , 2010 .

[25]  Günter Schiller,et al.  Spatial Distribution of Electrochemical Performance in a Segmented SOFC: A Combined Modeling and Experimental Study , 2010 .

[26]  A. Hagen,et al.  Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells , 2010 .

[27]  Yixiang Shi,et al.  Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas , 2010 .

[28]  D. Cui,et al.  Design for segmented-in-series solid oxide fuel cell through mathematical modeling , 2010 .

[29]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[30]  B. Zitouni,et al.  Hydrogen consumption and power density in a co-flow planar SOFC , 2009 .

[31]  E. Lust,et al.  Effect of Cell Geometry on the Electrochemical Parameters of Solid Oxide Fuel Cell Cathodes , 2009 .

[32]  J. Mukhopadhyay,et al.  Processing of high-performance anode-supported planar solid oxide fuel cell , 2008 .

[33]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[34]  Stefano Ubertini,et al.  Modeling solid oxide fuel cell operation: Approaches, techniques and results , 2006 .

[35]  B. Haberman,et al.  Numerical investigation of the air flow through a bundle of IP-SOFC modules , 2005 .

[36]  Doris Sebold,et al.  Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs , 2005 .

[37]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[38]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[39]  Nigel P. Brandon,et al.  Recent Advances in Materials for Fuel Cells , 2003 .

[40]  William J. Wepfer,et al.  Prediction of on-design and off-design performance for a solid oxide fuel cell power module , 1996 .

[41]  E. Achenbach Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack , 1994 .

[42]  N. Minh Ceramic Fuel Cells , 1993 .