The Structure of the Static Corona and Transition Region

Static models of coronal loops are investigated. For loops that are low-lying with heights above the chromosphere below about 5000 km, it is shown that a new type of solution appears to the static equations, in addition to the well-known coronal loop solution. The new solution is characterized by a maximum plasma temperature less than about 100,000 K. The structure and properties of these cool solutions are discussed. The differential emission measure Q(T) expected for a magnetic arcade, which must naturally contain both hot and cool loops, is calculated. It is shown that the cool loops have a dramatic effect on the form of Q(T) in the lower transition region. In particular, they can account for the observed rise in Q at low T, which has long been thought to be incompatible with the static-loop model. Finally, the implications of the cool loops on other observations of both the solar and stellar coronae and transition regions are discussed.