Finite element simulation of mechanical characterization of composite insulators

Finite Element Simulation and Mechanical Characterization of Composite Insulators Anurag Bansal Supervising Professor: Dr.M. Kumosa Composite Insulators are required to fulfill long-term structural roles in power transmission and substation applications. These insulators consist of a glass reinforced polymer (GRP) composite rod, with two metal end-fittings either mechanically crimped or adhesively bonded to the ends of the rod during assembly. In comparison with their porcelain counterparts, composite insulators offer significant advantages such as a high mechanical strength-to-weight ratio, improved damage tolerance, flexibility, and ease of installation. However, since they are a relatively new product, their design is still in an evolutionary stage, and their structural integrity and expected life to failure is a subject of great interest to both utilities and manufacturers. The objective of this study was to evaluate the short-term structural integrity of composite insulators subjected to externally applied multi-axial loads, in conjunction with the residual radial compression applied to the GRP rod during crimping. In order to achieve this goal, comprehensive axisymmetricand three-dimensional finite element models have been developed in this study. The models assumed either a perfectly bonded interface, or an imperfect interface between the GRP rod and metal end-fittings. The inter-

[1]  C. Sun,et al.  Application of the principles of linear fracture mechanics to the composite materials , 1982 .

[2]  Stephen W. Tsai,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[3]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[4]  T. F. Zagaeski,et al.  In-Plane Shear Test for Composite Materials. , 1978 .

[5]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[6]  Maciej Kumosa,et al.  Application of the Finite Element Iterative Method to cracks and sharp notches in orthotropic media , 1992 .

[7]  M. Schwartz Composite Materials Handbook , 1984 .

[8]  H. T. Hahn,et al.  A Mixed-Mode Fracture Criterion for Composite Materials , 1983 .

[9]  I. S. Tuba,et al.  A finite element method for contact problems of solid bodies—Part II. Application to turbine blade fastenings , 1971 .

[10]  Aj Russell,et al.  Moisture and Temperature Effects on the Mixed-Mode Delamination Fracture of Unidirectional Graphite/Epoxy , 1985 .

[11]  G. L. Farley,et al.  Non-linear numerical analysis of the Iosipescu specimen for composite materials , 1994 .

[12]  J. Williams End corrections for orthotropic DCB specimens , 1989 .

[13]  R. S. Barsoum,et al.  Asymptotic fields at interfaces using the finite element iterative method , 1990 .

[14]  D. Hull,et al.  Mixed-mode fracture of composites using Iosipescu shear test , 1987 .

[15]  Maciej Kumosa,et al.  Finite element analysis of axial splits in composite Iosipescu specimens , 1993 .

[16]  N. Sukumar Finite element analysis of mixed mode fracture and failure in Iosipescu specimens , 1992 .

[17]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[18]  M. Abdallah,et al.  The Influence of Test Fixture Design on the losipescu Shear Test for Fiber Composite Materials , 1989 .

[19]  E. M. Wu Application of Fracture Mechanics to Anisotropic Plates , 1967 .

[20]  Hans Albert Richard,et al.  A loading device for the creation of mixed mode in fracture mechanics , 1983 .

[21]  F. Erdogan,et al.  Stress singularities in a two-material wedge , 1971 .

[22]  D. Parks The virtual crack extension method for nonlinear material behavior , 1977 .

[23]  Z. Hashin,et al.  A method to produce uniform plane-stress states with applications to fiber-reinforced materials , 1978 .

[24]  R. Prabhakaran,et al.  An investigation of the losipescu and asymmetrical four-point bend tests , 1987 .

[25]  E. A. Wilson,et al.  Finite element analysis of elastic contact problems using differential displacements , 1970 .

[26]  John M Slepetz,et al.  Fracture of Composite Compact Tension Specimens , 1975 .

[27]  I. Raju Calculation of strain-energy release rates with higher order and singular finite elements , 1987 .

[28]  Masaru Nakazawa,et al.  Finite element incremental contact analysis with various frictional conditions , 1979 .

[29]  M. Williams,et al.  Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension , 1952 .

[30]  P. Ifju,et al.  Iosipescu shear characterization of polymeric and metal matrix composites , 1990 .

[31]  Mircea Arcan,et al.  The iosipescu shear test as applied to composite materials , 1984 .

[32]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[33]  G. L. Farley,et al.  Numerical analysis of the Iosipescu specimen for composite materials , 1993 .

[34]  J. Sullivan,et al.  Shear properties and a stress analysis obtained from vinyl-ester losipescu specimens , 1984 .

[35]  N. J. Pagano,et al.  Geometric Design of Composite Cylindrical Characterization Specimens , 1970 .

[36]  G. L. Farley,et al.  An Evaluation of the Iosipescu Specimen for Composite Materials Shear Property Measurement , 1991 .

[37]  J. A. Barnes,et al.  Theoretical and experimental evaluation of the Iosipescu shear test , 1987 .

[38]  J. M. McKinney,et al.  Mixed-Mode Fracture of Unidirectional Graphite/Epoxy Composites , 1972 .

[39]  A. Bansal,et al.  Experimental and Analytical Studies of Failure Modes in Iosipescu Specimens under Biaxial Loadings , 1995 .

[40]  A. Bansal,et al.  Application of the biaxial Iosipescu method to mixed-mode fracture of unidirectional composites , 1995 .

[41]  J. R. Griffiths,et al.  Evaluation of biaxial stress failure surfaces for a glass fabric reinforced polyester resin under static and fatigue loading , 1978 .

[42]  E.A. Cherney,et al.  Partial discharge. V. PD in polymer-type line insulators , 1991, IEEE Electrical Insulation Magazine.

[43]  L. Pargamin,et al.  Rating of composite suspension insulators related to the long term mechanical strength of rods , 1994 .

[44]  K. Wang,et al.  Stress singularities at interface corners in bonded dissimilar isotropic elastic materials , 1971 .

[45]  S. Lee,et al.  Evaluation of Testing Techniques for the losipescu Shear Test for Advanced Composite Materials , 1990 .

[46]  R. Barsoum,et al.  Theoretical basis of the finite element iterative method for the eigenvalue problem in stationary cracks , 1988 .

[47]  S. I. Krishnamachari Applied Stress Analysis of Plastics , 1993 .

[48]  O. C. Zienkiewicz,et al.  A note on numerical computation of elastic contact problems , 1975 .

[49]  R. S. Barsoum Cracks in anisotropic materials—an iterative solution of the eigenvalue problem , 1986, International Journal of Fracture.

[50]  P. C. Paris,et al.  On cracks in rectilinearly anisotropic bodies , 1965 .

[51]  Maciej Kumosa,et al.  Analysis of stress singular fields at a bimaterial wedge corner , 1994 .

[52]  D. Hull,et al.  Analysis of the Iosipescu shear test as applied to unidirectional carbon-fibre reinforced composites , 1990 .

[53]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[54]  T. O'Brien Characterization of delamination onset and growth in a composite laminate , 1982 .

[55]  John H. Crews,et al.  Interlaminar stress singularities at a straight free edge in composite laminates , 1981 .

[56]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[57]  Maciej Kumosa,et al.  Singular stress behavior at an adhesive interface corner , 1994 .

[58]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[59]  R. R. Mcwithey,et al.  An experimental and analytical investigation of the rail shear-test method as applied to composite materials , 1980 .

[60]  V. Saouma,et al.  Stress intensity factors in anisotropic bodies using singular isoparametric elements , 1986 .

[61]  S. Chan,et al.  A finite element method for contact problems of solid bodies—Part I. Theory and validation , 1971 .

[62]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[63]  J. G. Williams,et al.  On the calculation of energy release rates for cracked laminates , 1988 .

[64]  S. Lee,et al.  Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique , 1986 .

[65]  D. Adams,et al.  Analysis of the stress state in an Iosipescu sheartest specimen , 1983 .

[66]  Tzi-Kang Chen,et al.  Three-dimensional surface singularity of an interface crack , 1991 .

[67]  G. L. Farley,et al.  An experimental investigation of losipescu specimen for composite materials , 1991 .

[68]  Raju Sethuraman,et al.  Finite element based computation of strain energy release rate by modified crack closure integral , 1988 .

[69]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[70]  Roshdy S. Barsoum Application of the finite element iterative method to the eigenvalue problem of a crack between dissimilar media , 1988 .