Substitution Delone Sets
暂无分享,去创建一个
[1] C. Janot,et al. Quasicrystals: A Primer , 1992 .
[2] E. Arthur Robinson,et al. Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .
[3] Yang Wang,et al. Haar-Type Multiwavelet Bases and Self-Affine Multi-Tiles , 1999 .
[4] J. Lagarias,et al. Integral self-affine tiles in ℝn part II: Lattice tilings , 1997 .
[5] R. Moody. Meyer Sets and the Finite Generation of Quasicrystals , 1995 .
[6] Boris Solomyak,et al. Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.
[7] R. Kenyon. Projecting the one-dimensional Sierpinski gasket , 1997 .
[8] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[9] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[10] F. Gähler,et al. The Diffraction Pattern of Self-Similar Tilings , 1997 .
[11] B. Solomyak. Non-periodicity Implies Unique Composition for Self-similar Translationally--nite Tilings , 1997 .
[12] M. Senechal. Quasicrystals and geometry , 1995 .
[13] Yang Wang,et al. Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .
[14] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[15] Yves Meyer,et al. Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .
[16] D. Lind. Dynamical properties of quasihyperbolic toral automorphisms , 1982, Ergodic Theory and Dynamical Systems.
[17] K. Gröchenig,et al. Self-Affine Tilings with Several Tiles, I , 1999 .
[18] Jeffrey C. Lagarias,et al. Geometric Models for Quasicrystals II. Local Rules Under Isometries , 1999, Discret. Comput. Geom..
[19] J. J. P. Veerman,et al. Hausdorff Dimension of Boundaries of Self-Affine Tiles In R N , 1997, math/9701215.
[20] J. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .
[21] R. Kenyon. Inflationary tilings with a similarity structure , 1994 .
[22] Jeffrey C. Lagarias,et al. Meyer's concept of quasicrystal and quasiregular sets , 1996 .
[23] P. Steinhardt,et al. Quasicrystals: a new class of ordered structures , 1984 .
[24] B. Solomyak,et al. Spectrum of dynamical systems arising from Delone sets , 1998 .
[25] Boris Solomyak,et al. Nonperiodicity implies unique composition for self-similar translationally finite Tilings , 1998, Discret. Comput. Geom..
[26] R. Daniel Mauldin,et al. Hausdorff dimension in graph directed constructions , 1988 .
[27] John W. Cahn,et al. Quasicrystals , 2001, Journal of research of the National Institute of Standards and Technology.
[28] Jeffrey C. Lagarias,et al. Self-affine tiles in ℝn , 1996 .
[29] Brenda Praggastis. Markov partitions for hyperbolic toral automorphisms , 1992 .
[30] J. Lagarias,et al. Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .
[31] R. Moody. Meyer Sets and Their Duals , 1997 .
[32] D. Lind. The entropies of topological Markov shifts and a related class of algebraic integers , 1984, Ergodic Theory and Dynamical Systems.
[33] F. Lançon,et al. A simple example of a non-Pisot tiling with five-fold symmetry , 1992 .
[34] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[35] Jeffrey C. Lagarias,et al. Tiling the line with translates of one tile , 1996 .
[36] C Godreche. The sphinx: a limit-periodic tiling of the plane , 1989 .
[37] Jeffrey C. Lagarias,et al. Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..
[38] Andrew Vince,et al. Replicating Tessellations , 1993, SIAM J. Discret. Math..
[39] Jeffrey C. Lagarias,et al. Haar Bases for L 2 (R n ) and Algebraic Number Theory , 1996 .
[40] Le Tu Quoc Thang,et al. The geometry of quasicrystals , 1993 .
[41] Yang Wang. INTEGRAL SELF-AFFINE TILES IN Rn II. LATTICE TILINGS , 1998 .
[42] Jeong-Yup Lee,et al. Lattice substitution systems and model sets , 2001, Discret. Comput. Geom..
[43] Richard Kenyon. The construction of self-similar tilings , 1995 .
[44] Brenda Praggastis,et al. Numeration systems and Markov partitions from self similar tilings , 1999 .
[45] Karlheinz Gröchenig,et al. Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.