Substitution Delone Sets

Abstract. Substitution Delone set families are families of Delone sets X =(X1, . . ., Xn) which satisfy the inflation functional equation X_i = \bigvee_{j=1}^m ( \mbox{\phvr A} (X_j) + {\cal D}_$ij$ ) , \qquad 1 \le i \le m, in which A is an expanding matrix, i.e., all of the eigenvalues of A fall outside the unit circle. Here the Dij are finite sets of vectors in Rd and V denotes union that counts multiplicity. This paper characterizes families X=(X1, . . ., Xn) that satisfy an inflation functional equation, in which each Xi is a multiset (set with multiplicity) whose underlying set is discrete. It then studies the subclass of Delone set solutions, and gives necessary conditions on the coefficients of the inflation functional equation for such solutions X to exist. It relates Delone set solutions to a narrower subclass of solutions, called self-replicating multi-tiling sets, which arise as tiling sets for self-replicating multi-tilings.

[1]  C. Janot,et al.  Quasicrystals: A Primer , 1992 .

[2]  E. Arthur Robinson,et al.  Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .

[3]  Yang Wang,et al.  Haar-Type Multiwavelet Bases and Self-Affine Multi-Tiles , 1999 .

[4]  J. Lagarias,et al.  Integral self-affine tiles in ℝn part II: Lattice tilings , 1997 .

[5]  R. Moody Meyer Sets and the Finite Generation of Quasicrystals , 1995 .

[6]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[7]  R. Kenyon Projecting the one-dimensional Sierpinski gasket , 1997 .

[8]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[9]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[10]  F. Gähler,et al.  The Diffraction Pattern of Self-Similar Tilings , 1997 .

[11]  B. Solomyak Non-periodicity Implies Unique Composition for Self-similar Translationally--nite Tilings , 1997 .

[12]  M. Senechal Quasicrystals and geometry , 1995 .

[13]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[14]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[15]  Yves Meyer,et al.  Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .

[16]  D. Lind Dynamical properties of quasihyperbolic toral automorphisms , 1982, Ergodic Theory and Dynamical Systems.

[17]  K. Gröchenig,et al.  Self-Affine Tilings with Several Tiles, I , 1999 .

[18]  Jeffrey C. Lagarias,et al.  Geometric Models for Quasicrystals II. Local Rules Under Isometries , 1999, Discret. Comput. Geom..

[19]  J. J. P. Veerman,et al.  Hausdorff Dimension of Boundaries of Self-Affine Tiles In R N , 1997, math/9701215.

[20]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[21]  R. Kenyon Inflationary tilings with a similarity structure , 1994 .

[22]  Jeffrey C. Lagarias,et al.  Meyer's concept of quasicrystal and quasiregular sets , 1996 .

[23]  P. Steinhardt,et al.  Quasicrystals: a new class of ordered structures , 1984 .

[24]  B. Solomyak,et al.  Spectrum of dynamical systems arising from Delone sets , 1998 .

[25]  Boris Solomyak,et al.  Nonperiodicity implies unique composition for self-similar translationally finite Tilings , 1998, Discret. Comput. Geom..

[26]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[27]  John W. Cahn,et al.  Quasicrystals , 2001, Journal of research of the National Institute of Standards and Technology.

[28]  Jeffrey C. Lagarias,et al.  Self-affine tiles in ℝn , 1996 .

[29]  Brenda Praggastis Markov partitions for hyperbolic toral automorphisms , 1992 .

[30]  J. Lagarias,et al.  Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .

[31]  R. Moody Meyer Sets and Their Duals , 1997 .

[32]  D. Lind The entropies of topological Markov shifts and a related class of algebraic integers , 1984, Ergodic Theory and Dynamical Systems.

[33]  F. Lançon,et al.  A simple example of a non-Pisot tiling with five-fold symmetry , 1992 .

[34]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[35]  Jeffrey C. Lagarias,et al.  Tiling the line with translates of one tile , 1996 .

[36]  C Godreche The sphinx: a limit-periodic tiling of the plane , 1989 .

[37]  Jeffrey C. Lagarias,et al.  Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..

[38]  Andrew Vince,et al.  Replicating Tessellations , 1993, SIAM J. Discret. Math..

[39]  Jeffrey C. Lagarias,et al.  Haar Bases for L 2 (R n ) and Algebraic Number Theory , 1996 .

[40]  Le Tu Quoc Thang,et al.  The geometry of quasicrystals , 1993 .

[41]  Yang Wang INTEGRAL SELF-AFFINE TILES IN Rn II. LATTICE TILINGS , 1998 .

[42]  Jeong-Yup Lee,et al.  Lattice substitution systems and model sets , 2001, Discret. Comput. Geom..

[43]  Richard Kenyon The construction of self-similar tilings , 1995 .

[44]  Brenda Praggastis,et al.  Numeration systems and Markov partitions from self similar tilings , 1999 .

[45]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.