Visualizing Higher-Fold Topology in Chiral Crystals.

Novel topological phases of matter are fruitful platforms for the discovery of unconventional electromagnetic phenomena. Higher-fold topology is one example, where the low-energy description goes beyond standard model analogs. Despite intensive experimental studies, conclusive evidence remains elusive for the multigap topological nature of higher-fold chiral fermions. In this Letter, we leverage a combination of fine-tuned chemical engineering and photoemission spectroscopy with photon energy contrast to discover the higher-fold topology of a chiral crystal. We identify all bulk branches of a higher-fold chiral fermion for the first time, critically important for allowing us to explore unique Fermi arc surface states in multiple interband gaps, which exhibit an emergent ladder structure. Through designer chemical gating of the samples in combination with our measurements, we uncover an unprecedented multigap bulk boundary correspondence. Our demonstration of multigap electronic topology will propel future research on unconventional topological responses.

[1]  Su-Yang Xu,et al.  Weyl, Dirac and high-fold chiral fermions in topological quantum matter , 2021, Nature Reviews Materials.

[2]  T. Taniguchi,et al.  Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene , 2021, Nature Materials.

[3]  Kenji Watanabe,et al.  Correlation-driven topological phases in magic-angle twisted bilayer graphene , 2021, Nature.

[4]  A. Yacoby,et al.  Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene , 2021, Nature Physics.

[5]  Kenji Watanabe,et al.  Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene , 2020, Nature Physics.

[6]  Kenji Watanabe,et al.  Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene , 2020, Nature Physics.

[7]  C. Felser,et al.  Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi , 2020, Nature communications.

[8]  C. Felser,et al.  Optical signatures of multifold fermions in the chiral topological semimetal CoSi , 2020, Proceedings of the National Academy of Sciences.

[9]  Kenji Watanabe,et al.  Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene , 2020, Nature.

[10]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[11]  C. Felser,et al.  Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi , 2020, Science Advances.

[12]  Chaoxing Liu,et al.  Tuning the Chern number in quantum anomalous Hall insulators , 2020, Nature.

[13]  C. Felser,et al.  Linear and nonlinear optical responses in the chiral multifold semimetal RhSi , 2020, 2005.13473.

[14]  Yong Xu,et al.  Topological Phononics: From Fundamental Models to Real Materials , 2019, Advanced Functional Materials.

[15]  Daniel S. Sanchez,et al.  Topological chiral crystals with helicoid-arc quantum states , 2019, Nature.

[16]  Zhilin Li,et al.  Observation of unconventional chiral fermions with long Fermi arcs in CoSi , 2019, Nature.

[17]  Yoshinori Tokura,et al.  Magnetic topological insulators , 2019, Nature Reviews Physics.

[18]  Timur K. Kim,et al.  Chiral topological semimetal with multifold band crossings and long Fermi arcs , 2018, Nature Physics.

[19]  Q. Xue,et al.  Topological Materials: Quantum Anomalous Hall System , 2018 .

[20]  Su-Yang Xu,et al.  Topological quantum properties of chiral crystals , 2016, Nature Materials.

[21]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[22]  Y. Tokura,et al.  Emergent functions of quantum materials , 2017, Nature Physics.

[23]  Su-Yang Xu,et al.  Nexus fermions in topological symmorphic crystalline metals , 2017, Scientific Reports.

[24]  A. Burkov Weyl Metals , 2017, 1704.06660.

[25]  P. Delplace,et al.  Topological origin of equatorial waves , 2017, Science.

[26]  T. Morimoto,et al.  Quantized circular photogalvanic effect in Weyl semimetals , 2016, Nature Communications.

[27]  T. Qian,et al.  Experimental Observation of Three-Component 'New Fermions' in Topological Semimetal MoP , 2016, 1610.08877.

[28]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[29]  J. E. Moore,et al.  Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals , 2016, Nature Physics.

[30]  S. Huber Topological mechanics , 2016, Nature Physics.

[31]  P. Zoller,et al.  Topological quantum matter with ultracold gases in optical lattices , 2016, Nature Physics.

[32]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[33]  M. Helm,et al.  Intrinsic diamagnetism in the Weyl semimetal TaAs , 2015, 1510.08497.

[34]  T. Morimoto,et al.  Topological nature of nonlinear optical effects in solids , 2015, Science Advances.

[35]  A. Vishwanath,et al.  Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2 , 2015, Nature.

[36]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[37]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[38]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[39]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[40]  D. Shoenberg,et al.  The Magnetic Properties of Bismuth. II. The de Haas-van Alphen Effect , 1936 .