Natural attenuation of trichloroethene and its degradation products at a lake-shore site.

[1]  Hanadi S. Rifai,et al.  Biodegradation Rates for Fuel Hydrocarbons and Chlorinated Solvents in Groundwater , 1999 .

[2]  John T. Wilson,et al.  Extraction of degradation rate constants from the St. Joseph, Michigan trichloroethene site , 1996 .

[3]  Peter K. Kitanidis,et al.  Anaerobic Transformation of Chlorinated Aliphatic Hydrocarbons in a Sand Aquifer Based on Spatial Chemical Distributions , 1995 .

[4]  Peter B. McMahon,et al.  Deducing the Distribution of Terminal Electron‐Accepting Processes in Hydrologically Diverse Groundwater Systems , 1995 .

[5]  C. H. Ward,et al.  Handbook of Bioremediation , 1993 .

[6]  C. Tiedeman,et al.  Analysis of uncertainty in optimal groundwater contaminant capture design , 1993 .

[7]  M. Kästner,et al.  Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions , 1991, Applied and environmental microbiology.

[8]  R. Charbeneau,et al.  Probabilistic Soil Contamination Exposure Assessment Procedures , 1990 .

[9]  J. Gossett,et al.  Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions , 1989, Applied and environmental microbiology.

[10]  Derek R. Lovley,et al.  Kinetic Analysis of Competition Between Sulfate Reducers and Methanogens for Hydrogen in Sediments , 1982, Applied and environmental microbiology.

[11]  C. H. Ward,et al.  Bioremediation of chlorinated solvents using alternate electron acceptors. , 1994 .

[12]  John T. Wilson,et al.  Dissolved oxygen and methane in water by a GC headspace equilibration technique , 1989 .