Mesh Parametrization Driven by Unit Normal Flow

Based on mesh deformation, we present a unified mesh parametrization algorithm for both planar and spherical domains. Our approach can produce intermediate frames from the original meshes to the targets. We derive and define a novel geometric flow: ‘unit normal flow (UNF)’ and prove that if UNF converges, it will deform a surface to a constant mean curvature (CMC) surface, such as planes and spheres. Our method works by deforming meshes of disk topology to planes, and spherical meshes to spheres. Our algorithm is robust, efficient, simple to implement. To demonstrate the robustness and effectiveness of our method, we apply it to hundreds of models of varying complexities. Our experiments show that our algorithm can be a competing alternative approach to other state‐of‐the‐art mesh parametrization methods. The unit normal flow also suggests a potential direction for creating CMC surfaces.

[1]  Daniele Panozzo,et al.  Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..

[2]  Peter Schröder,et al.  Discrete Willmore flow , 2005, SIGGRAPH Courses.

[3]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[4]  Roi Poranne,et al.  Lifted bijections for low distortion surface mappings , 2014, ACM Trans. Graph..

[5]  Ligang Liu,et al.  Manifold Parameterization , 2006, Computer Graphics International.

[6]  Yutaka Ohtake,et al.  Mesh smoothing via mean and median filtering applied to face normals , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[7]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[8]  Eftychios Sifakis,et al.  Fast and Robust Inversion‐Free Shape Manipulation , 2016, Comput. Graph. Forum.

[9]  Caiming Zhang,et al.  Robust modeling of constant mean curvature surfaces , 2012, ACM Trans. Graph..

[10]  Ethel Mannin,et al.  The dark forest , 1946 .

[11]  Leif Kobbelt,et al.  Geometric fairing of irregular meshes for free-form surface design , 2001, Comput. Aided Geom. Des..

[12]  Gerhard Dziuk,et al.  Finite element approximations to surfaces of prescribed variable mean curvature , 2006, Numerische Mathematik.

[13]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[14]  Alain Chenciner,et al.  Three body problem , 2007, Scholarpedia.

[15]  Eitan Grinspun,et al.  Discrete quadratic curvature energies , 2006, Comput. Aided Geom. Des..

[16]  Alvaro Collet,et al.  Motion graphs for unstructured textured meshes , 2016, ACM Trans. Graph..

[17]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[18]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[19]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[20]  Ligang Liu,et al.  Advanced Hierarchical Spherical Parameterizations , 2018, IEEE Transactions on Visualization and Computer Graphics.

[21]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[22]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[23]  LévyBruno,et al.  Least squares conformal maps for automatic texture atlas generation , 2002 .

[24]  Zheng Liu,et al.  As-rigid-as-possible spherical parametrization , 2014, Graph. Model..

[25]  Ke Xu,et al.  Robust Edge-Preserved Surface Mesh Polycube Deformation , 2017, PG.

[26]  Min Zhang,et al.  Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation , 2016, Comput. Aided Geom. Des..

[27]  Qing Pan,et al.  Discrete surface modelling using partial differential equations , 2006, Comput. Aided Geom. Des..

[28]  Hui Zhao,et al.  Conformal mesh parameterization using discrete Calabi flow , 2018, Comput. Aided Geom. Des..

[29]  Michael M. Kazhdan,et al.  Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.

[30]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[31]  Konrad Polthier,et al.  Discrete Constant Mean Curvature Surfaces and Their Index (離散可積分系の研究の進展--超離散化・量子化) , 2001 .

[32]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[33]  Hujun Bao,et al.  Poisson shape interpolation , 2005, SPM '05.

[34]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[35]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[36]  Christian Rössl,et al.  Harmonic Guidance for Surface Deformation , 2005, Comput. Graph. Forum.

[37]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[38]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[39]  Ralph R. Martin,et al.  Fast and Effective Feature-Preserving Mesh Denoising , 2007, IEEE Transactions on Visualization and Computer Graphics.

[40]  Pierre Alliez,et al.  Spectral Conformal Parameterization , 2008, Comput. Graph. Forum.

[41]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[42]  Ross T. Whitaker,et al.  Geometric surface processing via normal maps , 2003, TOGS.

[43]  G. Taubin LINEAR ANISOTROPIC MESH FILTERING , 2001 .

[44]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[45]  Denis Zorin,et al.  Strict minimizers for geometric optimization , 2014, ACM Trans. Graph..

[46]  Robert J. Renka,et al.  A Simple and Efficient Method for Modeling Constant Mean Curvature Surfaces , 2015, SIAM J. Sci. Comput..

[47]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[48]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[49]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[50]  Xiaokang Yu,et al.  Surface parameterization based on polar factorization , 2018, J. Comput. Appl. Math..

[51]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[52]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[53]  Wei Chen,et al.  Measure controllable volumetric mesh parameterization , 2016, Comput. Aided Des..

[54]  Yang Liu,et al.  Computing inversion-free mappings by simplex assembly , 2016, ACM Trans. Graph..

[55]  Ross T. Whitaker,et al.  Geometric surface smoothing via anisotropic diffusion of normals , 2002, IEEE Visualization, 2002. VIS 2002..

[56]  Hui Zhao,et al.  Shape Deformation with a Stretching and Bending Energy , 2018, CASA 2018.

[57]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[58]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[59]  Guoliang Xu,et al.  A general framework for surface modeling using geometric partial differential equations , 2008, Comput. Aided Geom. Des..

[60]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[61]  Youyi Zheng,et al.  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Bilateral Normal Filtering for Mesh Denoising , 2022 .

[62]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[63]  BaoHujun,et al.  Poisson shape interpolation , 2006 .

[64]  Ligang Liu,et al.  Progressive parameterizations , 2018, ACM Trans. Graph..

[65]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[66]  Nicolaos Kapouleas Complete constant mean curvature surfaces in euclidean three-space , 1990 .

[67]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[68]  Wei Chen,et al.  Volume preserving mesh parameterization based on optimal mass transportation , 2017, Comput. Aided Des..

[69]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[70]  T. Colding,et al.  Generic mean curvature flow I; generic singularities , 2009, 0908.3788.