Finite Time Observers for a class of nonlinear system

In this paper, we consider the synthesis of Finite Time Observers for a class of nonlinear systems by solving some LMIs problem. We develop a method to calculate a constant gain which is used to determine an observer for a class of nonlinear systems. An application to the manipulator arm illustrates the proposed theory and point out the ameliorations comparing with asymptotic observers.

[1]  Fanglai Zhu,et al.  Observer-based synchronization of uncertain chaotic system and its application to secure communications☆ , 2009 .

[2]  Guanrong Chen Approximate Kalman filtering , 1993 .

[3]  Peter Dorato,et al.  An Overview of Finite-Time Stability , 2006 .

[4]  Hassani Messaoud,et al.  Finite time stabilization of linear systems by state feedback : Application to mixing tank system , 2013, 2013 International Conference on Control, Decision and Information Technologies (CoDIT).

[5]  A. Zemouche,et al.  Observer Design for Nonlinear Systems: An Approach Based on the Differential Mean Value Theorem. , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[6]  Francesco Amato,et al.  Application of Finite-Time Stability Concepts to the Control of ATM Networks , 2012 .

[7]  Emmanuel Moulay,et al.  Une contribution à l'étude de la stabilité en temps fini et de la stabilisation , 2005 .

[8]  Michel Zasadzinski,et al.  Finite-time stabilization of nonlinear quadratic systems by a non linear state feedback , 2016, 2016 European Control Conference (ECC).

[9]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[10]  Martin Corless,et al.  COMPARATIVE STUDY OF NONLINEAR STATE OBSERVATION TECHNIQUE , 1987 .

[11]  Francesco Amato,et al.  Finite-time control of linear systems subject to parametric uncertainties and disturbances , 2001, Autom..

[12]  Germain Garcia,et al.  Finite time stabilization of nonlinear affine systems application to robot manipulator , 2011, 2011 International Conference on Communications, Computing and Control Applications (CCCA).

[13]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[14]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[15]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[16]  J. Hedrick,et al.  Nonlinear Observers—A State-of-the-Art Survey , 1989 .

[17]  P. Dorato,et al.  Finite time stability under perturbing forces and on product spaces , 1967, IEEE Transactions on Automatic Control.

[18]  Francesco Amato,et al.  Necessary and sufficient conditions for finite-time stability of linear systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[19]  Mohammad Javad Yazdanpanah,et al.  Robust finite-time stabilization of uncertain nonlinear systems based on partial stability , 2016 .

[20]  P. Pagilla,et al.  Controller and observer design for Lipschitz nonlinear systems , 2004, Proceedings of the 2004 American Control Conference.

[21]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[22]  Carlo Cosentino,et al.  Finite-time stabilization via dynamic output feedback, , 2006, Autom..

[23]  W. Perruquetti,et al.  Lyapunov-based approach for finite time stability and stabilization , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[24]  Sophie Tarbouriech,et al.  Finite-Time Stabilization of Linear Time-Varying Continuous Systems , 2009, IEEE Transactions on Automatic Control.

[25]  Germain Garcia,et al.  Finite-time stabilization of nonlinear affine systems , 2010 .