Structural phase transition involving octahedron tilting and ion migration in metal-halide perovskites: A machine-learning study

[1]  X. Gou,et al.  The Highly Accurate Interatomic Potential of CsPbBr3 Perovskite with Temperature Dependence on the Structure and Thermal Properties , 2023, Materials.

[2]  G. Nasti,et al.  Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells , 2022, Communications Materials.

[3]  Yue Hu,et al.  Degradation pathways in perovskite solar cells and how to meet international standards , 2022, Communications Materials.

[4]  Douglas H. Fabini,et al.  Diverging Expressions of Anharmonicity in Halide Perovskites , 2022, Advanced materials.

[5]  Jörg Behler,et al.  Machine learning potentials for extended systems: a perspective , 2021, The European Physical Journal B.

[6]  D. Velauthapillai,et al.  A Review on Cs-Based Pb-Free Double Halide Perovskites: From Theoretical and Experimental Studies to Doping and Applications , 2021, Molecules.

[7]  Jonathan P. Mailoa,et al.  E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials , 2021, Nature Communications.

[8]  Cairong Zhang,et al.  Vacancy defects on optoelectronic properties of double perovskite Cs2AgBiBr6 , 2020 .

[9]  D. Tsvetkov,et al.  New phase transition in CsPbBr3 , 2020 .

[10]  A. Du,et al.  Dual‐Ion‐Diffusion Induced Degradation in Lead‐Free Cs2AgBiBr6 Double Perovskite Solar Cells , 2020, Advanced Functional Materials.

[11]  F. Gao,et al.  Lead‐Free Halide Double Perovskite Cs2AgBiBr6 with Decreased Band Gap , 2020, Angewandte Chemie.

[12]  M. Vaezzadeh,et al.  Theory of light-induced degradation in perovskite solar cells , 2020 .

[13]  Yurong Yang,et al.  Macroscopic and Microscopic Structures of Cesium Lead Iodide Perovskite from Atomistic Simulations , 2020, Advanced Functional Materials.

[14]  Tim Mueller,et al.  Machine learning for interatomic potential models. , 2020, The Journal of chemical physics.

[15]  Markus Meuwly,et al.  PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. , 2019, Journal of chemical theory and computation.

[16]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[17]  L. Herz,et al.  Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite , 2018, ACS Energy Letters.

[18]  L. Quan,et al.  Perovskites for Light Emission , 2018, Advanced materials.

[19]  L. Wan,et al.  Polar Solvent Induced Lattice Distortion of Cubic CsPbI3 Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. , 2018, Journal of the American Chemical Society.

[20]  Ding-Xuan Zhou,et al.  Universality of Deep Convolutional Neural Networks , 2018, Applied and Computational Harmonic Analysis.

[21]  D. Ginger,et al.  Direct Observation and Quantitative Analysis of Mobile Frenkel Defects in Metal Halide Perovskites Using Scanning Kelvin Probe Microscopy , 2018, The Journal of Physical Chemistry C.

[22]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[23]  J. Even,et al.  Critical Fluctuations and Anharmonicity in Lead Iodide Perovskites from Molecular Dynamics Supercell Simulations , 2017 .

[24]  Antonietta Guagliardi,et al.  Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals , 2017, ACS nano.

[25]  Ying Wai Li,et al.  Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects , 2017, Scientific Reports.

[26]  J. Behler Perspective: Machine learning potentials for atomistic simulations. , 2016, The Journal of chemical physics.

[27]  A. Walsh,et al.  Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? , 2016, ACS energy letters.

[28]  Yanfa Yan,et al.  Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites. , 2016, ChemSusChem.

[29]  Prashant V Kamat,et al.  Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange. , 2016, Journal of the American Chemical Society.

[30]  W. Windl,et al.  Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors , 2016 .

[31]  M. Kanatzidis,et al.  The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. , 2015, Accounts of chemical research.

[32]  A. Lushchik,et al.  Creation and clustering of Frenkel defects at high density of electronic excitations in wide-gap materials , 2012 .

[33]  R. Cohen,et al.  Thermo-electromechanical response of a ferroelectric perovskite from molecular dynamics simulations , 2011 .

[34]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  J. L. Nazareth,et al.  Conjugate gradient method , 2009 .

[37]  Aidan P Thompson,et al.  General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. , 2009, The Journal of chemical physics.

[38]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[39]  Zhigang Wu,et al.  Atomistic Model Potential for PbTiO3 and PMN by Fitting First Principles Results , 2004, cond-mat/0603355.

[40]  G. Ciccotti,et al.  Hoover NPT dynamics for systems varying in shape and size , 1993 .

[41]  V. Kuzovkov,et al.  Phenomenological kinetics of Frenkel defect recombination and accumulation in ionic solids , 1992 .

[42]  W. Lipscomb,et al.  The synchronous-transit method for determining reaction pathways and locating molecular transition states , 1977 .