Higher-Order Approximations for Testing Neglected Nonlinearity

We illustrate the need to use higher-order (specifically sixth-order) expansions in order to properly determine the asymptotic distribution of a standard artificial neural network test for neglected nonlinearity. The test statistic is a quasi-likelihood ratio (QLR) statistic designed to test whether the mean square prediction error improves by including an additional hidden unit with an activation function violating the no-zero condition in Cho, Ishida, and White (2011). This statistic is also shown to be asymptotically equivalent under the null to the Lagrange multiplier (LM) statistic of Luukkonen, Saikkonen, and Teräsvirta (1988) and Teräsvirta (1994). In addition, we compare the power properties of our QLR test to one satisfying the no-zero condition and find that the latter is not consistent for detecting a DGP with neglected nonlinearity violating an analogous no-zero condition, whereas our QLR test is consistent.

[1]  P. Phillips,et al.  Testing Linearity Using Power Transforms of Regressors , 2013 .

[2]  Jin Seo Cho,et al.  Testing for Neglected Nonlinearity Using Extreme Learning Machines (published in: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21, Suppl. 2 (2013), 117--129.) , 2013 .

[3]  Halbert White,et al.  Revisiting Tests for Neglected Nonlinearity Using Artificial Neural Networks , 2011, Neural Computation.

[4]  Peter C. B. Phillips,et al.  Folklore Theorems, Implicit Maps and New Unit Root Limit Theory , 2010 .

[5]  Jin Seo Cho,et al.  Testing for Regime Switching , 2007 .

[6]  Marine Carrasco,et al.  Optimal test for Markov switching , 2004 .

[7]  Robert B. Davies,et al.  Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case , 2002 .

[8]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[9]  T. Teräsvirta Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models , 1994 .

[10]  Timo Teräsvirta,et al.  Testing linearity against smooth transition autoregressive models , 1988 .

[11]  P. McCullagh Tensor Methods in Statistics , 1987 .

[12]  Peter McCullagh,et al.  The Conditional Distribution of Goodness-of-Fit Statistics for Discrete Data , 1986 .

[13]  P. McCullagh Tensor notation and cumulants of polynomials , 1984 .

[14]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[15]  M. Bartlett,et al.  APPROXIMATE CONFIDENCE INTERVALSMORE THAN ONE UNKNOWN PARAMETER , 1953 .

[16]  M. Bartlett,et al.  APPROXIMATE CONFIDENCE INTERVALS , 1953 .

[17]  H. Cramér Mathematical methods of statistics , 1946 .